Suppr超能文献

大肠杆菌中外源正丁醇胁迫的功能基因组研究。

Functional genomic study of exogenous n-butanol stress in Escherichia coli.

机构信息

Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA.

出版信息

Appl Environ Microbiol. 2010 Mar;76(6):1935-45. doi: 10.1128/AEM.02323-09. Epub 2010 Jan 29.

Abstract

n-Butanol has been proposed as an alternative biofuel to ethanol, and several industrially used microbes, including Escherichia coli, have been engineered to produce it. Unfortunately, n-butanol is more toxic than ethanol to these organisms. To understand the basis for its toxicity, cell-wide studies were conducted at the transcript, protein, and metabolite levels to obtain a global view of the n-butanol stress response. Analysis of the data indicates that n-butanol stress has components common to other stress responses, including perturbation of respiratory functions (nuo and cyo operons), oxidative stress (sodA, sodC, and yqhD), heat shock and cell envelope stress (rpoE, clpB, htpG, cpxR, and cpxP), and metabolite transport and biosynthesis (malE and opp operon). Assays using fluorescent dyes indicated a large increase in reactive oxygen species during n-butanol stress, confirming observations from the microarray and proteomics measurements. Mutant strains with mutations in several genes whose products changed most dramatically during n-butanol stress were examined for increased sensitivity to n-butanol. Results from these analyses allowed identification of key genes that were recruited to alleviate oxidative stress, protein misfolding, and other causes of growth defects. Cellular engineering based on these cues may assist in developing a high-titer, n-butanol-producing host.

摘要

正丁醇已被提议作为乙醇的替代生物燃料,包括大肠杆菌在内的几种工业上使用的微生物已被工程改造以生产它。不幸的是,与这些生物相比,正丁醇的毒性比乙醇更大。为了了解其毒性的基础,在转录、蛋白质和代谢物水平上进行了全细胞研究,以获得对正丁醇应激反应的全面了解。数据分析表明,正丁醇应激与其他应激反应有共同的组成部分,包括呼吸功能的干扰( nuo 和 cyo 操纵子)、氧化应激( sodA 、 sodC 和 yqhD )、热休克和细胞包膜应激( rpoE 、 clpB 、 htpG 、 cpxR 和 cpxP )以及代谢物运输和生物合成( malE 和 opp 操纵子)。使用荧光染料的测定表明,在正丁醇应激期间,活性氧的大量增加,证实了微阵列和蛋白质组学测量的观察结果。对在正丁醇应激过程中其产物变化最大的几个基因发生突变的突变株进行了分析,以确定它们对正丁醇的敏感性是否增加。这些分析的结果有助于确定关键基因,这些基因被招募来减轻氧化应激、蛋白质错误折叠和其他生长缺陷的原因。基于这些线索的细胞工程可能有助于开发高浓度、生产正丁醇的宿主。

相似文献

1
Functional genomic study of exogenous n-butanol stress in Escherichia coli.
Appl Environ Microbiol. 2010 Mar;76(6):1935-45. doi: 10.1128/AEM.02323-09. Epub 2010 Jan 29.
4
Characterization of the effects of n-butanol on the cell envelope of E. coli.
Appl Microbiol Biotechnol. 2016 Nov;100(22):9653-9659. doi: 10.1007/s00253-016-7771-6. Epub 2016 Sep 13.
5
Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance.
Appl Microbiol Biotechnol. 2012 May;94(4):1107-17. doi: 10.1007/s00253-012-4012-5. Epub 2012 Mar 31.
6
Global Functional Analysis of Butanol-Sensitive and Its Evolved Butanol-Tolerant Strain.
J Microbiol Biotechnol. 2017 Jun 28;27(6):1171-1179. doi: 10.4014/jmb.1702.02021.
7
Toward a semisynthetic stress response system to engineer microbial solvent tolerance.
mBio. 2012 Oct 2;3(5). doi: 10.1128/mBio.00308-12. Print 2012.
8
Transcriptional analysis of Lactobacillus brevis to N-butanol and ferulic acid stress responses.
PLoS One. 2011;6(8):e21438. doi: 10.1371/journal.pone.0021438. Epub 2011 Aug 2.
9
Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels.
J Proteome Res. 2013 Nov 1;12(11):5302-12. doi: 10.1021/pr400640u. Epub 2013 Sep 24.
10
Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli.
PLoS One. 2011 Mar 8;6(3):e17678. doi: 10.1371/journal.pone.0017678.

引用本文的文献

1
Potential confounding mutations in Keio knockout strains: implications for research accuracy.
Microbiol Spectr. 2025 Mar 31;13(5):e0203624. doi: 10.1128/spectrum.02036-24.
2
Comparative Proteomics of Bacteria Under Stress Conditions.
Methods Mol Biol. 2025;2859:129-162. doi: 10.1007/978-1-0716-4152-1_8.
4
Exogenous putrescine plays a switch-like influence on the pH stress adaptability of biofilm-based activated sludge.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0056924. doi: 10.1128/aem.00569-24. Epub 2024 Jun 25.
5
Advance of tolerance engineering on microbes for industrial production.
Synth Syst Biotechnol. 2023 Oct 31;8(4):697-707. doi: 10.1016/j.synbio.2023.10.004. eCollection 2023 Dec.
6
Escherichia coli displays a conserved membrane proteomic response to a range of alcohols.
Biotechnol Biofuels Bioprod. 2023 Oct 3;16(1):147. doi: 10.1186/s13068-023-02401-4.
7
A three-colour stress biosensor reveals multimodal response in single cells and spatiotemporal dynamics of biofilms.
NPJ Biofilms Microbiomes. 2023 Aug 21;9(1):57. doi: 10.1038/s41522-023-00424-1.
8
Advances in biosynthesis of higher alcohols in Escherichia coli.
World J Microbiol Biotechnol. 2023 Mar 21;39(5):125. doi: 10.1007/s11274-023-03580-w.
9
Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid.
Biotechnol Biofuels Bioprod. 2023 Feb 24;16(1):31. doi: 10.1186/s13068-023-02280-9.
10
Isobutanol production by combined and metabolic engineering.
Metab Eng Commun. 2022 Oct 23;15:e00210. doi: 10.1016/j.mec.2022.e00210. eCollection 2022 Dec.

本文引用的文献

1
An integrated network approach identifies the isobutanol response network of Escherichia coli.
Mol Syst Biol. 2009;5:277. doi: 10.1038/msb.2009.34. Epub 2009 Jun 16.
2
Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations.
Appl Environ Microbiol. 2009 Jul;75(13):4653-6. doi: 10.1128/AEM.00225-09. Epub 2009 May 1.
3
Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes.
Appl Environ Microbiol. 2009 May;75(9):2705-11. doi: 10.1128/AEM.01888-08. Epub 2009 Feb 27.
4
Butanol tolerance in a selection of microorganisms.
Appl Biochem Biotechnol. 2009 May;153(1-3):13-20. doi: 10.1007/s12010-008-8460-4. Epub 2008 Dec 17.
5
Importance of systems biology in engineering microbes for biofuel production.
Curr Opin Biotechnol. 2008 Jun;19(3):228-34. doi: 10.1016/j.copbio.2008.05.003.
6
Application of functional genomics to pathway optimization for increased isoprenoid production.
Appl Environ Microbiol. 2008 May;74(10):3229-41. doi: 10.1128/AEM.02750-07. Epub 2008 Mar 14.
7
Metabolic engineering delivers next-generation biofuels.
Nat Biotechnol. 2008 Mar;26(3):298-9. doi: 10.1038/nbt0308-298.
9
Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1.
Microbiology (Reading). 2007 Oct;153(Pt 10):3246-3254. doi: 10.1099/mic.0.2007/008896-0.
10
Bioproduction of butanol from biomass: from genes to bioreactors.
Curr Opin Biotechnol. 2007 Jun;18(3):220-7. doi: 10.1016/j.copbio.2007.04.002. Epub 2007 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验