Suppr超能文献

短乳杆菌转录组分析对正丁醇和阿魏酸胁迫的响应。

Transcriptional analysis of Lactobacillus brevis to N-butanol and ferulic acid stress responses.

机构信息

Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America.

出版信息

PLoS One. 2011;6(8):e21438. doi: 10.1371/journal.pone.0021438. Epub 2011 Aug 2.

Abstract

BACKGROUND

The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks.

METHODOLOGY AND PRINCIPAL FINDINGS

This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19:1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance.

CONCLUSIONS

Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors to enable facile production of biofuels from lignocellulosic biomass.

摘要

背景

生物质水解物中存在抗菌酚类化合物,如模型化合物阿魏酸,这给生物质与全细胞生物催化或发酵的广泛应用带来了重大挑战。目前,这些抑制性化合物必须通过额外的下游处理去除,或者必须充分稀释,以创造适合大多数工业上重要微生物菌株的环境。同时,为了从这些低成本原料高效生产下一代生物燃料,如正丁醇、异丙醇等,还必须克服产物毒性。

方法和主要发现

本研究通过全局转录响应分析,探讨了短乳杆菌对高阿魏酸和正丁醇的耐受性,短乳杆菌是一种常见于发酵过程中的乳酸菌。短乳杆菌的转录谱表明,阿魏酸的存在触发了目前尚未表征的膜蛋白的表达,可能是为了抵消阿魏酸诱导的膜流动性和离子渗漏变化。与阿魏酸胁迫反应相反,正丁醇对生长培养物的挑战主要诱导脂肪酸合成途径内的基因,并降低短乳杆菌膜内 19:1 环丙烷脂肪酸的比例。两种抑制剂都触发了普遍的应激反应。通过过表达乙酰辅酶 A 羧化酶亚基和删除环丙烷脂肪酸合酶(cfa)来改变大肠杆菌脂肪酸合成的通量的单独尝试都未能提高大肠杆菌对正丁醇的耐受性,这表明需要应激反应的其他成分来赋予正丁醇抗性。

结论

从短乳杆菌基因表达数据中已经确定了几种有希望的理解阿魏酸和正丁醇耐受性的途径。这些见解可用于指导进一步工程化模型工业生物,以更好地耐受这两类抑制剂,从而从木质纤维素生物质中方便地生产生物燃料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f25c/3149049/2b35f9d16fd4/pone.0021438.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验