New York State Psychiatric Institute, Columbia University, NY, NY 10032, USA.
Neuroimage. 2010 May 15;51(1):214-20. doi: 10.1016/j.neuroimage.2010.01.091. Epub 2010 Feb 1.
Establishing correspondences across brains for the purposes of comparison and group analysis is almost universally done by registering images to one another either directly or via a template. However, there are many registration algorithms to choose from. A recent evaluation of fully automated nonlinear deformation methods applied to brain image registration was restricted to volume-based methods. The present study is the first that directly compares some of the most accurate of these volume registration methods with surface registration methods, as well as the first study to compare registrations of whole-head and brain-only (de-skulled) images. We used permutation tests to compare the overlap or Hausdorff distance performance for more than 16,000 registrations between 80 manually labeled brain images. We compared every combination of volume-based and surface-based labels, registration, and evaluation. Our primary findings are the following: 1. de-skulling aids volume registration methods; 2. custom-made optimal average templates improve registration over direct pairwise registration; and 3. resampling volume labels on surfaces or converting surface labels to volumes introduces distortions that preclude a fair comparison between the highest ranking volume and surface registration methods using present resampling methods. From the results of this study, we recommend constructing a custom template from a limited sample drawn from the same or a similar representative population, using the same algorithm used for registering brains to the template.
为了进行比较和组分析,在大脑之间建立对应关系几乎普遍是通过直接或通过模板将图像相互配准来完成的。但是,有许多注册算法可供选择。最近对应用于脑图像配准的全自动非线性变形方法的评估仅限于基于体积的方法。本研究首次直接比较了这些体积配准方法中最准确的一些与表面配准方法,也是首次比较全脑和去颅骨(去骨)图像配准的研究。我们使用置换检验比较了超过 16000 次注册中 80 个手动标记脑图像之间的重叠或 Hausdorff 距离性能。我们比较了基于体积和基于表面的标签、配准和评估的每一种组合。我们的主要发现如下:1. 去颅骨有助于体积配准方法;2. 定制的最佳平均模板可改善配准效果,优于直接两两配准;3. 在表面上重新采样体积标签或转换表面标签为体积会引入扭曲,从而在使用当前重采样方法时,无法在最高排名的体积和表面配准方法之间进行公平比较。从这项研究的结果中,我们建议从相同或类似代表性人群中抽取有限样本,使用用于将大脑配准到模板的相同算法,从该样本构建定制模板。