Suppr超能文献

脂质磷酸盐磷酸酶 3 稳定β-连环蛋白诱导内皮细胞迁移和形成分支点结构。

Lipid phosphate phosphatase 3 stabilization of beta-catenin induces endothelial cell migration and formation of branching point structures.

机构信息

Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.

出版信息

Mol Cell Biol. 2010 Apr;30(7):1593-606. doi: 10.1128/MCB.00038-09. Epub 2010 Feb 1.

Abstract

Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates beta-catenin/lymphoid enhancer binding factor 1 (beta-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via beta-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated beta-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of beta-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of beta-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate beta-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated beta-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.

摘要

内皮细胞(EC)的迁移、细胞-细胞黏附和分支点结构的形成被认为是血管生成的标志;然而,这些过程的潜在机制尚不清楚。脂质磷酸酶 3(LPP3)是一种最近描述的与 p120-连环蛋白相关的整合素配体,定位于内皮细胞的黏着连接(AJs)中。在这里,我们检验了这样一个假设,即 LPP3 通过刺激β-连环蛋白/淋巴增强因子结合因子 1(β-catenin/LEF-1)来诱导 EC 的迁移和分支点结构的形成。在亚融合的 EC 中,LPP3 通过 PTEN 依赖性方式诱导β-catenin/LEF-1 信号转导从而诱导纤连蛋白的表达。在融合的 EC 中,p120-连环蛋白的耗竭恢复了 LPP3 介导的β-catenin/LEF-1 信号转导。LPP3 的耗竭导致β-catenin 的不稳定性,进而减少纤连蛋白的合成和沉积,从而抑制 EC 的迁移。相应地,在 LPP3 耗竭的 EC 中重新表达β-catenin 而不是 p120-连环蛋白恢复了纤连蛋白的从头合成,这介导了 EC 的迁移和分支点结构的形成。然而,在融合的 EC 中,一部分 p120-连环蛋白通过其 C 端细胞质结构域与 LPP3 相关并共定位于质膜上,从而限制了 LPP3 刺激β-catenin/LEF-1 信号转导的能力。因此,我们的研究确定了 LPP3 在协调 PTEN 介导的β-catenin/LEF-1 信号转导在 EC 迁移、细胞-细胞黏附和分支点结构形成中的关键作用。

相似文献

3
Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function.
Cardiovasc Res. 2016 Dec;112(3):702-713. doi: 10.1093/cvr/cvw217. Epub 2016 Sep 30.
5
The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning.
Development. 2003 Oct;130(19):4623-37. doi: 10.1242/dev.00635.
6
S-Nitrosation of β-catenin and p120 catenin: a novel regulatory mechanism in endothelial hyperpermeability.
Circ Res. 2012 Aug 17;111(5):553-63. doi: 10.1161/CIRCRESAHA.112.274548. Epub 2012 Jul 9.
7
δ-Catenin interacts with LEF-1 and negatively regulates its transcriptional activity.
Cell Biol Int. 2015 Aug;39(8):954-61. doi: 10.1002/cbin.10465. Epub 2015 Apr 16.
8
FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of beta-catenin expression.
J Exp Med. 2010 Aug 2;207(8):1675-85. doi: 10.1084/jem.20091857. Epub 2010 Jul 26.
9
p120-catenin and β-catenin differentially regulate cadherin adhesive function.
Mol Biol Cell. 2013 Mar;24(6):704-14. doi: 10.1091/mbc.E12-06-0471. Epub 2013 Jan 16.
10
Murine lipid phosphate phosphohydrolase-3 acts as a cell-associated integrin ligand.
Biochem Biophys Res Commun. 2005 Sep 30;335(3):906-19. doi: 10.1016/j.bbrc.2005.07.157.

引用本文的文献

1
Clonal dispersal is associated with tumor heterogeneity and poor prognosis in colorectal cancer.
iScience. 2025 Apr 10;28(5):112403. doi: 10.1016/j.isci.2025.112403. eCollection 2025 May 16.
2
Proteomic Investigation of Differential Interactomes of Glypican 1 and a Putative Disease-Modifying Variant of Ataxia.
J Proteome Res. 2023 Sep 1;22(9):3081-3095. doi: 10.1021/acs.jproteome.3c00402. Epub 2023 Aug 16.
4
Decoding the mechanism of earthworm extract against wounds: an integrated metabolomics and network pharmacology study.
Mol Divers. 2024 Apr;28(2):631-647. doi: 10.1007/s11030-023-10609-7. Epub 2023 Jan 27.
5
A requirement for Krüppel Like Factor-4 in the maintenance of endothelial cell quiescence.
Front Cell Dev Biol. 2022 Nov 8;10:1003028. doi: 10.3389/fcell.2022.1003028. eCollection 2022.
7
Transcriptomics of type 2 diabetic and healthy human neutrophils.
BMC Immunol. 2021 Jun 16;22(1):37. doi: 10.1186/s12865-021-00428-6.
8
Low-Level Nanog Expression in the Regulation of Quiescent Endothelium.
Arterioscler Thromb Vasc Biol. 2020 Sep;40(9):2244-2264. doi: 10.1161/ATVBAHA.120.314875. Epub 2020 Jul 9.
9
FLYWCH1, a Novel Suppressor of Nuclear β-Catenin, Regulates Migration and Morphology in Colorectal Cancer.
Mol Cancer Res. 2018 Dec;16(12):1977-1990. doi: 10.1158/1541-7786.MCR-18-0262. Epub 2018 Aug 10.
10
Integrated Human Evaluation of the Lysophosphatidic Acid Pathway as a Novel Therapeutic Target in Atherosclerosis.
Mol Ther Methods Clin Dev. 2018 Jun 27;10:17-28. doi: 10.1016/j.omtm.2018.05.003. eCollection 2018 Sep 21.

本文引用的文献

1
Lipid phosphate phosphatases and signaling.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S225-30. doi: 10.1194/jlr.R800055-JLR200. Epub 2008 Dec 9.
2
Branching morphogenesis.
Circ Res. 2008 Oct 10;103(8):784-95. doi: 10.1161/CIRCRESAHA.108.181818.
3
Wnt signaling in angiogenesis.
Curr Drug Targets. 2008 Jul;9(7):558-64. doi: 10.2174/138945008784911822.
4
Chick pulmonary Wnt5a directs airway and vascular tubulogenesis.
Development. 2008 Apr;135(7):1365-76. doi: 10.1242/dev.010504. Epub 2008 Feb 27.
5
Wnt/Frizzled signaling in angiogenesis.
Angiogenesis. 2008;11(1):63-9. doi: 10.1007/s10456-008-9095-3. Epub 2008 Feb 6.
6
VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation.
Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):223-32. doi: 10.1161/ATVBAHA.107.158014. Epub 2007 Dec 27.
7
Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis.
Biochim Biophys Acta. 2008 Mar;1778(3):794-809. doi: 10.1016/j.bbamem.2007.09.003. Epub 2007 Sep 15.
8
Cell-matrix adhesion in vascular development.
J Thromb Haemost. 2007 Jul;5 Suppl 1:32-40. doi: 10.1111/j.1538-7836.2007.02569.x.
9
p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner.
Genes Cells. 2007 Jul;12(7):827-39. doi: 10.1111/j.1365-2443.2007.01095.x.
10
Wnt signalling: variety at the core.
J Cell Sci. 2007 Feb 1;120(Pt 3):385-93. doi: 10.1242/jcs.03363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验