Suppr超能文献

利用嵌入式磁动纳米换能器和光相干断层扫描技术对软组织进行共振声谱分析。

Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography.

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA.

出版信息

Phys Med Biol. 2010 Feb 21;55(4):1189-201. doi: 10.1088/0031-9155/55/4/019. Epub 2010 Feb 2.

Abstract

We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30-400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young's modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process.

摘要

我们提出了一种新的软组织样本动态弹性成像方法。通过光学相干断层扫描来感知纳米级位移,施加啁啾调制力,在几秒钟内获取组织样本的力学频谱。这种调制力是通过称为“纳米换能器”的磁性纳米粒子施加的,纳米换能器扩散到组织中,对软组织力学系统的惯性贡献可以忽略不计。使用这个新系统,我们观察到离体组织表现出机械共振模式,这些模式可以很好地用线性阻尼谐振子来描述。结果通过使用琼脂制成的圆柱形组织仿体进行验证,其中共振频率(30-400 Hz)与纵向模式和样品边界条件一致。我们还表明,可以从测量的共振频率计算杨氏模量,类似于用于硬材料分析的共振超声光谱。使用这项名为磁驱动共振声谱学(MRAS)的新技术,我们监测了化学固定过程中离体大鼠肝脏的相对硬度变化。

相似文献

1
Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography.
Phys Med Biol. 2010 Feb 21;55(4):1189-201. doi: 10.1088/0031-9155/55/4/019. Epub 2010 Feb 2.
2
Phase-resolved acoustic radiation force optical coherence elastography.
J Biomed Opt. 2012 Nov;17(11):110505. doi: 10.1117/1.JBO.17.11.110505.
3
Mechanical contrast in spectroscopic magnetomotive optical coherence elastography.
Phys Med Biol. 2015 Sep 7;60(17):6655-68. doi: 10.1088/0031-9155/60/17/6655. Epub 2015 Aug 13.
4
Elastometry of clot phantoms via magnetomotive ultrasound-based resonant acoustic spectroscopy.
Phys Med Biol. 2022 Jul 21;67(15). doi: 10.1088/1361-6560/ac7ea5.
5
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.
Theranostics. 2021 Mar 23;11(12):5620-5633. doi: 10.7150/thno.55333. eCollection 2021.
6
Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
Med Phys. 2013 Nov;40(11):111910. doi: 10.1118/1.4824149.
7
Audio frequency in vivo optical coherence elastography.
Phys Med Biol. 2009 May 21;54(10):3129-39. doi: 10.1088/0031-9155/54/10/011. Epub 2009 May 6.
9
Two-dimensional elastic distribution imaging of the sclera using acoustic radiation force optical coherence elastography.
J Biophotonics. 2024 Feb;17(2):e202300368. doi: 10.1002/jbio.202300368. Epub 2023 Dec 7.
10
Spectroscopic optical coherence elastography.
Opt Express. 2010 Dec 6;18(25):25519-34. doi: 10.1364/OE.18.025519.

引用本文的文献

1
Chirp excitation for natural frequency optical coherence elastography.
Biomed Opt Express. 2024 Sep 13;15(10):5856-5871. doi: 10.1364/BOE.536685. eCollection 2024 Oct 1.
2
corneal elastography: A topical review of challenges and opportunities.
Comput Struct Biotechnol J. 2023 Apr 13;21:2664-2687. doi: 10.1016/j.csbj.2023.04.009. eCollection 2023.
3
Elastometry of clot phantoms via magnetomotive ultrasound-based resonant acoustic spectroscopy.
Phys Med Biol. 2022 Jul 21;67(15). doi: 10.1088/1361-6560/ac7ea5.
4
Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography.
Front Bioeng Biotechnol. 2022 Mar 11;10:851094. doi: 10.3389/fbioe.2022.851094. eCollection 2022.
5
Introduction to optical coherence elastography: tutorial.
J Opt Soc Am A Opt Image Sci Vis. 2022 Mar 1;39(3):418-430. doi: 10.1364/JOSAA.444808.
6
Magnetic particles in motion: magneto-motive imaging and sensing.
Theranostics. 2022 Jan 24;12(4):1783-1799. doi: 10.7150/thno.54056. eCollection 2022.
7
Making a science out of preanalytics: An analytical method to determine optimal tissue fixation in real-time.
PLoS One. 2021 Oct 14;16(10):e0258495. doi: 10.1371/journal.pone.0258495. eCollection 2021.
8
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.
Theranostics. 2021 Mar 23;11(12):5620-5633. doi: 10.7150/thno.55333. eCollection 2021.
10
Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography.
Biomed Opt Express. 2020 May 26;11(6):3301-3318. doi: 10.1364/BOE.391324. eCollection 2020 Jun 1.

本文引用的文献

1
Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials.
Opt Express. 2009 Dec 7;17(25):23114-22. doi: 10.1364/OE.17.023114.
2
Magnetomotive contrast for in vivo optical coherence tomography.
Opt Express. 2005 Aug 22;13(17):6597-614. doi: 10.1364/opex.13.006597.
3
OCT-based arterial elastography: robust estimation exploiting tissue biomechanics.
Opt Express. 2004 Sep 20;12(19):4558-72. doi: 10.1364/opex.12.004558.
4
OCT elastography: imaging microscopic deformation and strain of tissue.
Opt Express. 1998 Sep 14;3(6):199-211. doi: 10.1364/oe.3.000199.
6
Optical micro-scale mapping of dynamic biomechanical tissue properties.
Opt Express. 2008 Jul 21;16(15):11052-65. doi: 10.1364/oe.16.011052.
7
Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples.
Phys Med Biol. 2007 Mar 21;52(6):1565-76. doi: 10.1088/0031-9155/52/6/002. Epub 2007 Feb 16.
8
Emerging concepts in molecular MRI.
Curr Opin Biotechnol. 2007 Feb;18(1):4-10. doi: 10.1016/j.copbio.2006.11.001. Epub 2006 Nov 28.
9
Optical coherence elastography of engineered and developing tissue.
Tissue Eng. 2006 Jan;12(1):63-73. doi: 10.1089/ten.2006.12.63.
10
Spectral-domain phase microscopy.
Opt Lett. 2005 May 15;30(10):1162-4. doi: 10.1364/ol.30.001162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验