Suppr超能文献

活性氧诱导线粒体网络中活性氧释放的反应-扩散模型。

A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

机构信息

Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2010 Jan 29;6(1):e1000657. doi: 10.1371/journal.pcbi.1000657.

Abstract

Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS). Here, we develop a mathematical model of ROS-induced ROS release (RIRR) based on reaction-diffusion (RD-RIRR) in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and Ca(2+) handling. Local mitochondrial interaction is mediated by superoxide (O2.-) diffusion and the O2.(-)-dependent activation of an inner membrane anion channel (IMAC). In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m) depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.-) diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m) depolarization is mediated specifically by O2.-). The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the fundamental mechanisms leading from the failure of individual organelles to the whole cell, thus it has important implications for understanding cell death during the progression of heart disease.

摘要

线粒体功能丧失是细胞损伤和死亡的根本决定因素。在代谢应激下的心肌细胞中,我们之前描述了线粒体网络中,局部相互作用如何依赖活性氧(ROS)使线粒体能量状态的突然崩溃或振荡同步。在此,我们基于一维和二维线粒体网络中的反应扩散(RD-RIRR),开发了一个基于 ROS 诱导的 ROS 释放(RIRR)的数学模型。RD-RIRR 网络的节点由单个线粒体模型组成,这些模型包括一种基于 ROS 产生、运输和清除相互作用的 ROS 依赖性振荡机制,并纳入三羧酸(TCA)循环、氧化磷酸化和 Ca(2+)处理。局部线粒体相互作用由超氧化物(O2.-)扩散和 O2.-依赖性激活内膜阴离子通道(IMAC)介导。在由 500 个线粒体组成的 2D 网络中,模型模拟显示类似于当分离的豚鼠心肌细胞受到局部激光闪光或抗氧化剂耗竭时观察到的 DeltaPsi(m)去极化波。反应扩散模型中 O2.-扩散、产生和清除对去极化波传播速度的敏感性与实验观察到的相似。此外,我们提出了新的实验证据,这些证据是在通透化的心肌细胞中获得的,证实 DeltaPsi(m)去极化是由 O2.-介导的。本工作表明,在 RIRR 的反应扩散模型中,可以再现观察到的线粒体网络的宏观性质。此外,研究结果揭示了同步机制的一个新方面,即正在振荡的线粒体簇可以使原本显示稳定动力学的线粒体同步。该工作确定了从单个细胞器失效到整个细胞的基本机制,因此对理解心脏病进展过程中的细胞死亡具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cbb/2813265/8a4551b689e8/pcbi.1000657.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验