Suppr超能文献

心肌细胞中线粒体的振荡和波:计算模型的见解。

Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models.

机构信息

Department of Medicine (Cardiology), David Geffen School of Medicine at University of California, Los Angeles, California, USA.

出版信息

Biophys J. 2010 Apr 21;98(8):1428-38. doi: 10.1016/j.bpj.2009.12.4300.

Abstract

Periodic cellwide depolarizations of mitochondrial membrane potential (PsiM) which are triggered by reactive oxygen species (ROS) and propagated by ROS-induced ROS release (RIRR) have been postulated to contribute to cardiac arrhythmogenesis and injury during ischemia/reperfusion. Two different modes of RIRR have been described: PsiM oscillations involving ROS-sensitive mitochondrial inner membrane anion channels (IMAC), and slow depolarization waves related to mitochondrial permeability transition pore (MPTP) opening. In this study, we developed a computational model of mitochondria exhibiting both IMAC-mediated RIRR and MPTP-mediated RIRR, diffusively coupled in a spatially extended network, to study the spatiotemporal dynamics of RIRR on PsiM. Our major findings are: 1), as the rate of ROS production increases, mitochondria can exhibit either oscillatory dynamics facilitated by IMAC opening, or bistable dynamics facilitated by MPTP opening; 2), in a diffusively-coupled mitochondrial network, the oscillatory dynamics of IMAC-mediated RIRR results in rapidly propagating (approximately 25 microm/s) cellwide PsiM oscillations, whereas the bistable dynamics of MPTP-mediated RIRR results in slow (0.1-2 microm/s) PsiM depolarization waves; and 3), the slow velocity of the MPTP-mediated depolarization wave is related to competition between ROS scavenging systems and ROS diffusion. Our observations provide mechanistic insights into the spatiotemporal dynamics underlying RIRR-induced PsiM oscillations and waves observed experimentally in cardiac myocytes.

摘要

周期性的线粒体膜电位去极化(PsiM),由活性氧(ROS)触发并通过 ROS 诱导的 ROS 释放(RIRR)传播,被认为有助于缺血/再灌注期间的心脏心律失常和损伤。已经描述了两种不同的 RIRR 模式:涉及 ROS 敏感的线粒体内膜阴离子通道(IMAC)的 PsiM 振荡,以及与线粒体通透性转换孔(MPTP)开放相关的缓慢去极化波。在这项研究中,我们开发了一个展示 IMAC 介导的 RIRR 和 MPTP 介导的 RIRR 的线粒体计算模型,这些模型在空间扩展的网络中扩散耦合,以研究 RIRR 在 PsiM 上的时空动力学。我们的主要发现是:1),随着 ROS 产生速率的增加,线粒体可以表现出由 IMAC 打开促进的振荡动力学,或由 MPTP 打开促进的双稳态动力学;2),在扩散耦合的线粒体网络中,IMAC 介导的 RIRR 的振荡动力学导致快速传播(约 25 微米/秒)的细胞 PsiM 振荡,而 MPTP 介导的 RIRR 的双稳态动力学导致缓慢(0.1-2 微米/秒)的 PsiM 去极化波;3),MPTP 介导的去极化波的缓慢速度与 ROS 清除系统和 ROS 扩散之间的竞争有关。我们的观察结果为实验中观察到的 RIRR 诱导的 PsiM 振荡和波的时空动力学提供了机制见解。

相似文献

1
Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models.
Biophys J. 2010 Apr 21;98(8):1428-38. doi: 10.1016/j.bpj.2009.12.4300.
2
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.
Physiol Rev. 2014 Jul;94(3):909-50. doi: 10.1152/physrev.00026.2013.
4
A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria.
Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1651-65. doi: 10.1089/ars.2006.8.1651.
5
Mitochondrial ROS-induced ROS release: an update and review.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17. doi: 10.1016/j.bbabio.2006.04.029. Epub 2006 May 23.
6
A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.
PLoS Comput Biol. 2010 Jan 29;6(1):e1000657. doi: 10.1371/journal.pcbi.1000657.
7
Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium.
J Physiol. 2011 Nov 1;589(Pt 21):5167-79. doi: 10.1113/jphysiol.2011.214239. Epub 2011 Aug 8.
8
Linking flickering to waves and whole-cell oscillations in a mitochondrial network model.
Biophys J. 2011 Nov 2;101(9):2102-11. doi: 10.1016/j.bpj.2011.09.038. Epub 2011 Nov 1.

引用本文的文献

1
An amplification mechanism for weak ELF magnetic fields quantum-bio effects in cancer cells.
Sci Rep. 2025 Jan 23;15(1):2964. doi: 10.1038/s41598-025-87235-w.
2
Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction.
Cardiovasc Diabetol. 2024 Jul 18;23(1):261. doi: 10.1186/s12933-024-02357-1.
3
Modeling the reactive oxygen species (ROS) wave in Chlamydomonas reinhardtii colonies.
Free Radic Biol Med. 2024 Sep;222:165-172. doi: 10.1016/j.freeradbiomed.2024.06.003. Epub 2024 Jun 6.
4
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney.
Bioact Mater. 2022 Sep 29;22:141-167. doi: 10.1016/j.bioactmat.2022.09.021. eCollection 2023 Apr.
5
Mitochondrial Contributions in the Genesis of Delayed Afterdepolarizations in Ventricular Myocytes.
Front Physiol. 2021 Oct 14;12:744023. doi: 10.3389/fphys.2021.744023. eCollection 2021.
6
Modulating mitochondrial dynamics attenuates cardiac ischemia-reperfusion injury in prediabetic rats.
Acta Pharmacol Sin. 2022 Jan;43(1):26-38. doi: 10.1038/s41401-021-00626-3. Epub 2021 Mar 12.
7
Mitochondrial depolarization promotes calcium alternans: Mechanistic insights from a ventricular myocyte model.
PLoS Comput Biol. 2021 Jan 25;17(1):e1008624. doi: 10.1371/journal.pcbi.1008624. eCollection 2021 Jan.
9
A Spatiotemporal Ventricular Myocyte Model Incorporating Mitochondrial Calcium Cycling.
Biophys J. 2019 Dec 17;117(12):2349-2360. doi: 10.1016/j.bpj.2019.09.005. Epub 2019 Sep 12.
10
The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart.
Front Physiol. 2018 Oct 26;9:1518. doi: 10.3389/fphys.2018.01518. eCollection 2018.

本文引用的文献

1
Glycolytic oscillations in isolated rabbit ventricular myocytes.
J Biol Chem. 2008 Dec 26;283(52):36321-7. doi: 10.1074/jbc.M804794200. Epub 2008 Oct 23.
2
Superoxide flashes in single mitochondria.
Cell. 2008 Jul 25;134(2):279-90. doi: 10.1016/j.cell.2008.06.017.
4
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6. doi: 10.1152/ajpcell.00211.2007. Epub 2007 Dec 12.
5
Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
J Biol Chem. 2007 Aug 24;282(34):24525-37. doi: 10.1074/jbc.M701024200. Epub 2007 Jun 25.
6
Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
Am J Physiol Cell Physiol. 2007 Sep;293(3):C815-29. doi: 10.1152/ajpcell.00355.2006. Epub 2007 Jun 20.
7
Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status.
J Biol Chem. 2007 Jul 27;282(30):21889-900. doi: 10.1074/jbc.M702841200. Epub 2007 May 31.
8
A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria.
Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1651-65. doi: 10.1089/ars.2006.8.1651.
9
The fundamental organization of cardiac mitochondria as a network of coupled oscillators.
Biophys J. 2006 Dec 1;91(11):4317-27. doi: 10.1529/biophysj.106.087817. Epub 2006 Sep 15.
10
Systems biology approaches to metabolic and cardiovascular disorders: network perspectives of cardiovascular metabolism.
J Lipid Res. 2006 Nov;47(11):2355-66. doi: 10.1194/jlr.R600023-JLR200. Epub 2006 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验