Suppr超能文献

实验室进化酵母菌株的全基因组测序。

Whole-genome sequencing of a laboratory-evolved yeast strain.

机构信息

Department of Genome Sciences, University of Washington, Box 355065, Seattle, Washington 98195, USA.

出版信息

BMC Genomics. 2010 Feb 3;11:88. doi: 10.1186/1471-2164-11-88.

Abstract

BACKGROUND

Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined.

RESULTS

We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28x depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5x gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement.

CONCLUSIONS

This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

摘要

背景

微生物种群的实验进化为研究对受控选择压力的进化适应提供了独特的机会。然而,直到最近,要在全基因组范围内确定适应的精确遗传变化一直很困难。新的 DNA 测序技术现在可以快速确定微生物的亲本和进化菌株的基因组。

结果

我们对实验室进化的酵母酿酒酵母及其祖先的菌株进行了测序,测序深度 >93.5%,达到 28 倍以上。我们发现了单核苷酸多态性和拷贝数扩增,与以前用于分析这些基因组的基于阵列的方法相比,有特定的增益。应用分割算法来量化结构变化,我们确定了 5x 基因扩增的大致基因组边界。这些边界指导了断点序列的恢复,为复杂基因组重排的性质提供了深入的见解。

结论

本研究表明,全基因组测序可以快速揭示进化适应的遗传基础,在实验室选择和诱变筛选的研究中有进一步的应用。此外,我们展示了如何使用单端短读测序数据提供有关结构重排的详细信息,并对基因组可塑性的基础基因组特征和过程进行预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb1/2829512/eb0c07aaa054/1471-2164-11-88-1.jpg

相似文献

1
Whole-genome sequencing of a laboratory-evolved yeast strain.
BMC Genomics. 2010 Feb 3;11:88. doi: 10.1186/1471-2164-11-88.
2
Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16144-9. doi: 10.1073/pnas.242624799. Epub 2002 Nov 21.
4
Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing.
BMC Genomics. 2009 Jan 21;10:37. doi: 10.1186/1471-2164-10-37.
6
Comparative genomics of wild type yeast strains unveils important genome diversity.
BMC Genomics. 2008 Nov 4;9:524. doi: 10.1186/1471-2164-9-524.
7
Systematic identification of balanced transposition polymorphisms in Saccharomyces cerevisiae.
PLoS Genet. 2009 Jun;5(6):e1000502. doi: 10.1371/journal.pgen.1000502. Epub 2009 Jun 5.
9
Genome sequence of the lager brewing yeast, an interspecies hybrid.
DNA Res. 2009 Apr;16(2):115-29. doi: 10.1093/dnares/dsp003. Epub 2009 Mar 4.
10
The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
PLoS Genet. 2008 Dec;4(12):e1000303. doi: 10.1371/journal.pgen.1000303. Epub 2008 Dec 12.

引用本文的文献

4
The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress.
Annu Rev Microbiol. 2023 Sep 15;77:341-361. doi: 10.1146/annurev-micro-041320-112443. Epub 2023 Jun 12.
5
An improved algorithm for inferring mutational parameters from bar-seq evolution experiments.
BMC Genomics. 2023 May 6;24(1):246. doi: 10.1186/s12864-023-09345-x.
8
Application of simultaneous selective pressures slows adaptation.
Evol Appl. 2020 Aug 15;13(7):1615-1625. doi: 10.1111/eva.13062. eCollection 2020 Aug.

本文引用的文献

1
Exome sequencing identifies the cause of a mendelian disorder.
Nat Genet. 2010 Jan;42(1):30-5. doi: 10.1038/ng.499. Epub 2009 Nov 13.
2
Experimental evolution of bet hedging.
Nature. 2009 Nov 5;462(7269):90-3. doi: 10.1038/nature08504.
3
Genome evolution and adaptation in a long-term experiment with Escherichia coli.
Nature. 2009 Oct 29;461(7268):1243-7. doi: 10.1038/nature08480. Epub 2009 Oct 18.
4
Targeted capture and massively parallel sequencing of 12 human exomes.
Nature. 2009 Sep 10;461(7261):272-6. doi: 10.1038/nature08250. Epub 2009 Aug 16.
5
The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group.
Genome Res. 2009 Sep;19(9):1622-9. doi: 10.1101/gr.092197.109. Epub 2009 May 26.
6
A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation.
Nat Genet. 2009 May;41(5):535-43. doi: 10.1038/ng.367. Epub 2009 Apr 19.
7
Massively parallel exon capture and library-free resequencing across 16 genomes.
Nat Methods. 2009 May;6(5):315-6. doi: 10.1038/nmeth.f.248. Epub 2009 Apr 6.
8
Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution.
Science. 2009 Apr 3;324(5923):55-9. doi: 10.1126/science.1165557. Epub 2009 Feb 12.
9
Population genomics of domestic and wild yeasts.
Nature. 2009 Mar 19;458(7236):337-41. doi: 10.1038/nature07743. Epub 2009 Feb 11.
10
The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
PLoS Genet. 2008 Dec;4(12):e1000303. doi: 10.1371/journal.pgen.1000303. Epub 2008 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验