Schmid Daners Marianne, Kaufmann Friedrich, Amacher Raffael, Ochsner Gregor, Wilhelm Markus J, Ferrari Aldo, Mazza Edoardo, Poulikakos Dimos, Meboldt Mirko, Falk Volkmar
Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
German Heart Center Berlin, Berlin, Germany.
Ann Biomed Eng. 2017 Aug;45(8):1836-1851. doi: 10.1007/s10439-017-1858-9. Epub 2017 May 31.
Over the last few decades, the left ventricular assist device (LVAD) technology has been tremendously improved transitioning from large and noisy paracorporeal volume displacement pumps to small implantable turbodynamic devices with only a single transcutaneous element, the driveline. Nevertheless, there remains a great demand for further improvements to meet the challenge of having a robust and safe device for long-term therapy. Here, we review the state of the art and highlight four key areas of needed improvement targeting long-term, sustainable LVAD function: (1) LVADs available today still have a high risk of thromboembolic and bleeding events that could be addressed by the rational fabrication of novel surface structures and endothelialization approaches aiming at improving the device hemocompatibility. (2) Novel, fluid dynamically optimized pump designs will further reduce blood damage. (3) Infection due to the paracorporeal driveline can be avoided with a transcutaneous energy transmission system that additionally allows for increased freedom of movement. (4) Finally, the lack of pump flow adaptation needs to be encountered with physiological control systems, working collaboratively with biocompatible sensor devices, targeting the adaptation of the LVAD flow to the perfusion requirements of the patient. The interdisciplinary Zurich Heart project investigates these technology gaps paving the way toward LVADs for long-term, sustainable therapy.
在过去几十年里,左心室辅助装置(LVAD)技术有了巨大改进,从大型且噪音大的体外容积置换泵发展到只有一个经皮部件(驱动线)的小型可植入涡轮动力装置。然而,仍有很大需求进行进一步改进,以应对拥有一个坚固且安全的装置用于长期治疗的挑战。在此,我们回顾当前技术水平,并强调针对长期、可持续LVAD功能所需改进的四个关键领域:(1)如今可用的LVAD仍有很高的血栓栓塞和出血事件风险,可通过合理制造新型表面结构和内皮化方法来解决,旨在改善装置的血液相容性。(2)新型的、流体动力学优化的泵设计将进一步减少血液损伤。(3)经皮能量传输系统可避免体外驱动线引起的感染,该系统还能增加活动自由度。(4)最后,需要通过生理控制系统来解决泵流量适应性不足的问题,该系统与生物相容性传感器装置协同工作,目标是使LVAD流量适应患者的灌注需求。跨学科的苏黎世心脏项目正在研究这些技术差距,为长期、可持续治疗的LVAD铺平道路。