Suppr超能文献

蛋白质构象搜索的特征空间重采样。

Feature space resampling for protein conformational search.

机构信息

Department of Electrical Engineering and Computer Science, University of California, Berkeley, 94720, USA.

出版信息

Proteins. 2010 May 1;78(6):1583-93. doi: 10.1002/prot.22677.

Abstract

De novo protein structure prediction requires location of the lowest energy state of the polypeptide chain among a vast set of possible conformations. Powerful approaches include conformational space annealing, in which search progressively focuses on the most promising regions of conformational space, and genetic algorithms, in which features of the best conformations thus far identified are recombined. We describe a new approach that combines the strengths of these two approaches. Protein conformations are projected onto a discrete feature space which includes backbone torsion angles, secondary structure, and beta pairings. For each of these there is one "native" value: the one found in the native structure. We begin with a large number of conformations generated in independent Monte Carlo structure prediction trajectories from Rosetta. Native values for each feature are predicted from the frequencies of feature value occurrences and the energy distribution in conformations containing them. A second round of structure prediction trajectories are then guided by the predicted native feature distributions. We show that native features can be predicted at much higher than background rates, and that using the predicted feature distributions improves structure prediction in a benchmark of 28 proteins. The advantages of our approach are that features from many different input structures can be combined simultaneously without producing atomic clashes or otherwise physically inviable models, and that the features being recombined have a relatively high chance of being correct.

摘要

从头蛋白质结构预测需要在大量可能构象中定位多肽链的最低能量状态。强大的方法包括构象空间退火,其中搜索逐渐集中在构象空间最有前途的区域,以及遗传算法,其中迄今为止确定的最佳构象的特征被重新组合。我们描述了一种结合这两种方法优点的新方法。蛋白质构象被投影到一个离散的特征空间上,该空间包括骨架扭转角、二级结构和β配对。对于每一个特征,都有一个“天然”值:在天然结构中发现的那个值。我们从 Rosetta 的独立 Monte Carlo 结构预测轨迹开始,生成了大量构象。每个特征的天然值是根据特征值出现的频率和包含它们的构象中的能量分布来预测的。然后,第二轮结构预测轨迹由预测的天然特征分布指导。我们表明,可以以远高于背景的速率预测天然特征,并且使用预测的特征分布可以提高 28 个蛋白质基准测试中的结构预测。我们方法的优点是可以同时组合来自许多不同输入结构的特征,而不会产生原子冲突或以其他方式不可行的模型,并且正在重新组合的特征具有相对较高的正确性机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca23/2854516/1cbde36f8c2f/nihms188124f1.jpg

相似文献

2
Sampling bottlenecks in de novo protein structure prediction.从头蛋白质结构预测中的采样瓶颈
J Mol Biol. 2009 Oct 16;393(1):249-60. doi: 10.1016/j.jmb.2009.07.063. Epub 2009 Jul 28.
9
Improving fragment quality for de novo structure prediction.提高用于从头结构预测的片段质量。
Proteins. 2014 Sep;82(9):2240-52. doi: 10.1002/prot.24587. Epub 2014 May 2.

引用本文的文献

本文引用的文献

1
Sampling bottlenecks in de novo protein structure prediction.从头蛋白质结构预测中的采样瓶颈
J Mol Biol. 2009 Oct 16;393(1):249-60. doi: 10.1016/j.jmb.2009.07.063. Epub 2009 Jul 28.
2
Macromolecular modeling with rosetta.使用Rosetta进行大分子建模。
Annu Rev Biochem. 2008;77:363-82. doi: 10.1146/annurev.biochem.77.062906.171838.
5
Improving protein structure prediction with model-based search.利用基于模型的搜索改进蛋白质结构预测。
Bioinformatics. 2005 Jun;21 Suppl 1:i66-74. doi: 10.1093/bioinformatics/bti1029.
7
Coupled prediction of protein secondary and tertiary structure.蛋白质二级和三级结构的耦合预测
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12105-10. doi: 10.1073/pnas.1831973100. Epub 2003 Oct 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验