Suppr超能文献

分裂与合并分水岭算法:一种用于荧光显微镜图像中细胞分割的两步法。

Split and Merge Watershed: a two-step method for cell segmentation in fluorescence microscopy images.

作者信息

Gamarra Margarita, Zurek Eduardo, Escalante Hugo Jair, Hurtado Leidy, San-Juan-Vergara Homero

机构信息

Department of Electronic Engineering. Politécnico de la Costa Atlántica, Barranquilla, Colombia.

Department of Systems Engineering. Universidad del Norte, Barranquilla, Colombia.

出版信息

Biomed Signal Process Control. 2019 Aug;53. doi: 10.1016/j.bspc.2019.101575. Epub 2019 Jun 4.

Abstract

The development of advanced techniques in medical imaging has allowed scanning of the human body to microscopic levels, making research on cell behavior more complex and more in-depth. Recent studies have focused on cellular heterogeneity since cell-to-cell differences are always present in the cell population and this variability contains valuable information. However, identifying each cell is not an easy task because, in the images acquired from the microscope, there are clusters of cells that are touching one another. Therefore, the segmentation stage is a problem of considerable difficulty in cell image processing. Although several methods for cell segmentation are described in the literature, they have drawbacks in terms of over-segmentation, under-segmentation or misidentification. Consequently, our main motivation in studying cell segmentation was to develop a new method to achieve a good tradeoff between accurately identifying all relevant elements and not inserting segmentation artifacts. This article presents a new method for cell segmentation in fluorescence microscopy images. The proposed approach combines the well-known Marker-Controlled Watershed algorithm (MC-Watershed) with a new, two-step method based on Watershed, Split and Merge Watershed (SM-Watershed): in the first step, or split phase, the algorithm identifies the clusters using inherent characteristics of the cell, such as size and convexity, and separates them using watershed. In the second step, or the merge stage, it identifies the over-segmented regions using proper features of the cells and eliminates the divisions. Before applying our two-step method, the input image is first preprocessed, and the MC-Watershed algorithm is used to generate an initial segmented image. However, this initial result may not be suitable for subsequent tasks, such as cell count or feature extraction, because not all cells are separated, and some cells may be mistakenly confused with the background. Thus, our proposal corrects this issue with its two-step process, reaching a high performance, a suitable tradeoff between over-segmentation and under-segmentation and preserving the shape of the cell, without the need of any labeled data or relying on machine learning processes. The latter is advantageous over state-of-the-art techniques that in order to achieve similar results require labeled data, which may not be available for all of the domains. Two cell datasets were used to validate this approach, and the results were compared with other methods in the literature, using traditional metrics and quality visual assessment. We obtained 90% of average visual accuracy and an F-index higher than 80%. This proposal outperforms other techniques for cell separation, achieving an acceptable balance between over-segmentation and under-segmentation, which makes it suitable for several applications in cell identification, such as virus infection analysis, high-content cell screening, drug discovery, and morphometry.

摘要

医学成像先进技术的发展使得对人体的扫描能够达到微观层面,这使得对细胞行为的研究更加复杂和深入。由于细胞群体中总是存在细胞间差异,且这种变异性包含有价值的信息,因此近期的研究集中在细胞异质性上。然而,识别每个细胞并非易事,因为在从显微镜获取的图像中,存在相互接触的细胞簇。因此,分割阶段是细胞图像处理中一个相当困难的问题。尽管文献中描述了几种细胞分割方法,但它们在过分割、欠分割或误识别方面存在缺陷。因此,我们研究细胞分割的主要动机是开发一种新方法,以便在准确识别所有相关元素与不引入分割伪像之间取得良好的平衡。本文提出了一种用于荧光显微镜图像中细胞分割的新方法。所提出的方法将著名的标记控制分水岭算法(MC - 分水岭)与一种基于分水岭的新的两步法——分割合并分水岭算法(SM - 分水岭)相结合:在第一步,即分割阶段,该算法利用细胞的固有特征(如大小和凸度)识别细胞簇,并使用分水岭算法将它们分开。在第二步,即合并阶段,它利用细胞的适当特征识别过分割区域并消除分割。在应用我们的两步法之前,首先对输入图像进行预处理,并使用MC - 分水岭算法生成初始分割图像。然而,这个初始结果可能不适用于后续任务,如细胞计数或特征提取,因为并非所有细胞都被分开,并且一些细胞可能会被误认作背景。因此,我们的方法通过其两步过程纠正了这个问题,实现了高性能,在过分割和欠分割之间取得了合适的平衡,并保留了细胞的形状,无需任何标记数据或依赖机器学习过程。这一点优于现有技术,现有技术为了获得类似结果需要标记数据,而这些数据可能并非在所有领域都可用。使用了两个细胞数据集来验证这种方法,并使用传统指标和质量视觉评估将结果与文献中的其他方法进行比较。我们获得了90%的平均视觉准确率和高于80%的F指数。该方法在细胞分离方面优于其他技术,在过分割和欠分割之间实现了可接受的平衡,这使其适用于细胞识别中的多种应用,如病毒感染分析、高内涵细胞筛选、药物发现和形态测量。

相似文献

引用本文的文献

本文引用的文献

3
Pre-processing by data augmentation for improved ellipse fitting.数据增强预处理以提高椭圆拟合。
PLoS One. 2018 May 15;13(5):e0196902. doi: 10.1371/journal.pone.0196902. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验