Suppr超能文献

使用多中心临床试验数据训练和部署用于溃疡性结肠炎内镜严重程度分级的深度学习模型。

Training and deploying a deep learning model for endoscopic severity grading in ulcerative colitis using multicenter clinical trial data.

作者信息

Gutierrez Becker Benjamin, Arcadu Filippo, Thalhammer Andreas, Gamez Serna Citlalli, Feehan Owen, Drawnel Faye, Oh Young S, Prunotto Marco

机构信息

Roche Pharma Research and Early Development Informatics, Roche Innovation Center Basel, Basel, Switzerland.

Roche Personalized Healthcare, Genentech, Inc., South San Francisco, CA, USA.

出版信息

Ther Adv Gastrointest Endosc. 2021 Feb 25;14:2631774521990623. doi: 10.1177/2631774521990623. eCollection 2021 Jan-Dec.

Abstract

INTRODUCTION

The Mayo Clinic Endoscopic Subscore is a commonly used grading system to assess the severity of ulcerative colitis. Correctly grading colonoscopies using the Mayo Clinic Endoscopic Subscore is a challenging task, with suboptimal rates of interrater and intrarater variability observed even among experienced and sufficiently trained experts. In recent years, several machine learning algorithms have been proposed in an effort to improve the standardization and reproducibility of Mayo Clinic Endoscopic Subscore grading.

METHODS

Here we propose an end-to-end fully automated system based on deep learning to predict a binary version of the Mayo Clinic Endoscopic Subscore directly from raw colonoscopy videos. Differently from previous studies, the proposed method mimics the assessment done in practice by a gastroenterologist, that is, traversing the whole colonoscopy video, identifying visually informative regions and computing an overall Mayo Clinic Endoscopic Subscore. The proposed deep learning-based system has been trained and deployed on raw colonoscopies using Mayo Clinic Endoscopic Subscore ground truth provided only at the colon section level, without manually selecting frames driving the severity scoring of ulcerative colitis.

RESULTS AND CONCLUSION

Our evaluation on 1672 endoscopic videos obtained from a multisite data set obtained from the etrolizumab Phase II Eucalyptus and Phase III Hickory and Laurel clinical trials, show that our proposed methodology can grade endoscopic videos with a high degree of accuracy and robustness (Area Under the Receiver Operating Characteristic Curve = 0.84 for Mayo Clinic Endoscopic Subscore ⩾ 1, 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 2 and 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 3) and reduced amounts of manual annotation.

PLAIN LANGUAGE SUMMARY

Artificial intelligence can be used to automatically assess full endoscopic videos and estimate the severity of ulcerative colitis. In this work, we present an artificial intelligence algorithm for the automatic grading of ulcerative colitis in full endoscopic videos. Our artificial intelligence models were trained and evaluated on a large and diverse set of colonoscopy videos obtained from concluded clinical trials. We demonstrate not only that artificial intelligence is able to accurately grade full endoscopic videos, but also that using diverse data sets obtained from multiple sites is critical to train robust AI models that could potentially be deployed on real-world data.

摘要

引言

梅奥诊所内镜亚评分是一种常用的评估溃疡性结肠炎严重程度的分级系统。使用梅奥诊所内镜亚评分对结肠镜检查进行正确分级是一项具有挑战性的任务,即使在经验丰富且经过充分培训的专家中,评分者间和评分者内的变异性也不尽人意。近年来,人们提出了几种机器学习算法,以提高梅奥诊所内镜亚评分分级的标准化和可重复性。

方法

在此,我们提出一种基于深度学习的端到端全自动系统,可直接从原始结肠镜检查视频预测梅奥诊所内镜亚评分的二元版本。与以往研究不同的是,该方法模仿了胃肠病学家在实际操作中的评估方式,即遍历整个结肠镜检查视频,识别视觉信息丰富的区域,并计算总体梅奥诊所内镜亚评分。所提出的基于深度学习的系统已使用仅在结肠段水平提供的梅奥诊所内镜亚评分真值在原始结肠镜检查上进行训练和部署,无需手动选择驱动溃疡性结肠炎严重程度评分的帧。

结果与结论

我们对从etrolizumab II期桉树试验和III期山核桃及月桂树临床试验获得的多站点数据集中的1672个内镜视频进行的评估表明,我们提出的方法能够以高度的准确性和稳健性对内镜视频进行分级(梅奥诊所内镜亚评分⩾1时,受试者操作特征曲线下面积为0.84;梅奥诊所内镜亚评分⩾2时为0.85;梅奥诊所内镜亚评分⩾3时为0.85),并减少了手动标注的工作量。

通俗易懂的总结

人工智能可用于自动评估完整的内镜视频并估计溃疡性结肠炎的严重程度。在这项工作中,我们展示了一种用于完整内镜视频中溃疡性结肠炎自动分级的人工智能算法。我们的人工智能模型在从已完成的临床试验中获得的大量多样的结肠镜检查视频上进行了训练和评估。我们不仅证明了人工智能能够准确地对完整的内镜视频进行分级,还证明了使用从多个站点获得的多样数据集对于训练可能部署在真实世界数据上的稳健人工智能模型至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f3/7917417/a39ac4f6d126/10.1177_2631774521990623-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验