Sakmar T P, Franke R R, Khorana H G
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3079-83. doi: 10.1073/pnas.88.8.3079.
Glu-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Purified mutant rhodopsin pigments were prepared in which Glu-113 was replaced individually by Gln (E113Q), Asp (E113D), Asn (E113N), or Ala (E113A). E113Q, E113N, and E113A existed as pH-dependent equilibrium mixtures of unprotonated and protonated Schiff base (PSB) forms. The Schiff base pKa values determined by spectrophotometric titration were 6.00 (E113Q), 6.71 (E113N), and 5.70 (E113A). Thus, mutation of Glu-113 markedly reduced the Schiff base pKa. The addition of NaCl promoted the formation of a PSB in E113Q and E113A. An exogenously supplied solute anion replaced Glu-113 to compensate for the positive charge of the PSB in these mutants. The lambda max values of the PSB forms of the mutants in NaCl were 496 nm (E113Q), 506 nm (E113A), 510 nm (E113D), and 520 nm (E113N). To evaluate the effect of different types of solute anions on lambda max values, mutants were prepared in sodium salts of halides, perchlorate, and a series of carboxylic acids of various sizes and acidity. The lambda max values of E113Q and E113A depended on the solute anion present and ranged from 488 nm to 522 nm for E113Q and from 486 nm to 528 nm for E113A. The solute anion affected the lambda max values of E113N and E113D to lesser degrees. The reactivities of the mutants to hydroxylamine were also studied. Whereas rhodopsin was stable to hydroxylamine in the dark, E113N reacted slowly and E113Q reacted rapidly under these conditions, indicating structural differences in the Schiff base environments. The lambda max values and solute anion dependencies of the Glu-113 mutants indicate that interactions between Schiff base and its counterion play a significant role in determining the lambda max of rhodopsin.
在牛视紫红质中,Glu-113作为视黄醛席夫碱抗衡离子。制备了纯化的突变视紫红质色素,其中Glu-113分别被Gln(E113Q)、Asp(E113D)、Asn(E113N)或Ala(E113A)取代。E113Q、E113N和E113A以未质子化席夫碱(PSB)形式和质子化席夫碱形式的pH依赖性平衡混合物存在。通过分光光度滴定法测定的席夫碱pKa值分别为6.00(E113Q)、6.71(E113N)和5.70(E113A)。因此,Glu-11 的突变显著降低了席夫碱pKa。添加NaCl促进了E113Q和E113A中PSB的形成。外源供应的溶质阴离子取代了Glu-113,以补偿这些突变体中PSB的正电荷。突变体在NaCl中PSB形式的最大吸收波长(λmax)值分别为496 nm(E113Q)、506 nm(E113A)、510 nm(E113D)和520 nm(E113N)。为了评估不同类型溶质阴离子对λmax值的影响,制备了卤化物钠盐、高氯酸盐以及一系列不同大小和酸度的羧酸盐中的突变体。E113Q和E113A的λmax值取决于存在的溶质阴离子,E113Q的范围为488 nm至522 nm,E113A的范围为486 nm至528 nm。溶质阴离子对E113N和E113D的λmax值影响较小。还研究了突变体对羟胺的反应性。虽然视紫红质在黑暗中对羟胺稳定,但在这些条件下E113N反应缓慢,E113Q反应迅速,表明席夫碱环境存在结构差异。Glu-113突变体的λmax值和溶质阴离子依赖性表明,席夫碱与其抗衡离子之间的相互作用在决定视紫红质的λmax方面起着重要作用。 (注:原文中“Glu-11 ”应改为“Glu-113”,译文已修正)