Department of Mathematics and Statistics, McMaster University, Hamilton, Canada.
Bull Math Biol. 2010 Aug;72(6):1506-33. doi: 10.1007/s11538-010-9507-6. Epub 2010 Feb 9.
Multiple transmission pathways exist for many waterborne diseases, including cholera, Giardia, Cryptosporidium, and Campylobacter. Theoretical work exploring the effects of multiple transmission pathways on disease dynamics is incomplete. Here, we consider a simple ODE model that extends the classical SIR framework by adding a compartment (W) that tracks pathogen concentration in the water. Infected individuals shed pathogen into the water compartment, and new infections arise both through exposure to contaminated water, as well as by the classical SIR person-person transmission pathway. We compute the basic reproductive number (Symbol: see text), epidemic growth rate, and final outbreak size for the resulting "SIWR" model, and examine how these fundamental quantities depend upon the transmission parameters for the different pathways. We prove that the endemic disease equilibrium for the SIWR model is globally stable. We identify the pathogen decay rate in the water compartment as a key parameter determining when the distinction between the different transmission routes in the SIWR model is important. When the decay rate is slow, using an SIR model rather than the SIWR model can lead to under-estimates of the basic reproductive number and over-estimates of the infectious period.
多种传播途径存在于许多水传播疾病中,包括霍乱、贾第虫、隐孢子虫和弯曲杆菌。探索多种传播途径对疾病动态影响的理论工作并不完整。在这里,我们考虑一个简单的 ODE 模型,通过在经典 SIR 框架中添加一个跟踪水中病原体浓度的隔室 (W) 来扩展该模型。受感染的个体将病原体排入水中隔室,新的感染既通过接触受污染的水,也通过经典的 SIR 人际传播途径发生。我们计算了“SIWR”模型的基本繁殖数 (Symbol: see text)、流行病增长率和最终爆发规模,并研究了这些基本数量如何取决于不同途径的传播参数。我们证明了 SIWR 模型的地方病平衡点是全局稳定的。我们将水中病原体的衰减率确定为决定 SIWR 模型中不同传播途径区分重要性的关键参数。当衰减率较慢时,使用 SIR 模型而不是 SIWR 模型可能会导致基本繁殖数的低估和传染性期的高估。