Department of Mathematics, Mekelle University, Mekelle, Tigray, Ethiopia.
Department of Applied Mathematics, Federal University of Technology, Babura, Jigawa State, Nigeria.
Sci Rep. 2024 Feb 26;14(1):4616. doi: 10.1038/s41598-024-55240-0.
A mathematical model that describes the dynamics of bacterium vibrio cholera within a fixed population considering intrinsic bacteria growth, therapeutic treatment, sanitation and vaccination rates is developed. The developed mathematical model is validated against real cholera data. A sensitivity analysis of some of the model parameters is also conducted. The intervention rates are found to be very important parameters in reducing the values of the basic reproduction number. The existence and stability of equilibrium solutions to the mathematical model are also carried out using analytical methods. The effect of some model parameters on the stability of equilibrium solutions, number of infected individuals, number of susceptible individuals and bacteria density is rigorously analyzed. One very important finding of this research work is that keeping the vaccination rate fixed and varying the treatment and sanitation rates provide a rapid decline of infection. The fourth order Runge-Kutta numerical scheme is implemented in MATLAB to generate the numerical solutions.
建立了一个数学模型,该模型考虑了固有细菌生长、治疗、卫生和疫苗接种率,描述了固定种群中霍乱弧菌的动力学。所开发的数学模型经过真实霍乱数据验证。还对模型的一些参数进行了敏感性分析。干预率被发现是降低基本繁殖数的非常重要的参数。使用分析方法还对数学模型的平衡点的存在和稳定性进行了研究。严格分析了一些模型参数对平衡点稳定性、感染人数、易感人数和细菌密度的影响。这项研究工作的一个非常重要的发现是,保持疫苗接种率固定并改变治疗和卫生率可以迅速降低感染率。在 MATLAB 中实现了四阶龙格库塔数值方案来生成数值解。