Kusakabe Takehiro G, Takimoto Noriko, Jin Minghao, Tsuda Motoyuki
Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2897-910. doi: 10.1098/rstb.2009.0043.
Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.
视觉色素吸收光子会诱导11-顺式视黄醛(RAL)发色团异构化为全反式视黄醛。由于缺乏11-顺式视黄醛的视蛋白会失去光敏感性,持续的视觉需要通过所谓的“视觉循环”过程持续再生11-顺式视黄醛。原口动物和脊椎动物使用本质上不同的视觉色素再生机制,脊椎动物视觉循环的起源和早期进化是一个未解之谜。在这里,我们比较了脊椎动物不同光感受器(包括视杆细胞、视锥细胞和非视觉光感受器)之间以及脊椎动物和无脊椎动物之间的视觉类视黄醇循环。海鞘是脊椎动物现存最近的亲属,其视觉循环系统显示出介于脊椎动物和非脊索动物无脊椎动物之间的中间状态。海鞘幼虫可能使用类视色素还原酶样视蛋白作为主要异构酶。视觉循环的整个过程可以在具有明显亚细胞区室化的光感受器细胞内发生,尽管视觉循环成分也存在于周围的非光感受器细胞中。成年海鞘可能使用RPE65异构酶,反式到顺式异构化可能发生在不同的细胞区室中,这与脊椎动物的情况类似。向脊椎动物复杂的类视黄醇循环的完全转变可能需要获得新的基因,如光感受器间类视黄醇结合蛋白,以及视觉循环基因的功能进化。