Suppr超能文献

白念珠菌对唑类、多烯和棘白菌素类抗真菌药物反应的蛋白质组变化。

Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents.

机构信息

Department of Clinical Pharmacy, Colleges of Pharmacy and Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.

出版信息

Antimicrob Agents Chemother. 2010 May;54(5):1655-64. doi: 10.1128/AAC.00756-09. Epub 2010 Feb 9.

Abstract

The yeast Candida albicans is an opportunistic human fungal pathogen and the cause of superficial and systemic infections in immunocompromised patients. The classes of antifungal agents most commonly used to treat Candida infections are the azoles, polyenes, and echinocandins. In the present study, we identified changes in C. albicans protein abundance using two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectroscopy following exposure to representatives of the azole (ketoconazole), polyene (amphotericin B), and echinocandin (caspofungin) antifungals in an effort to elucidate the adaptive responses to these classes of antifungal agents. We identified 39 proteins whose abundance changed in response to ketoconazole exposure. Some of these proteins are involved in ergosterol biosynthesis and are associated with azole resistance. Exposure to amphotericin B altered the abundance of 43 proteins, including those associated with oxidative stress and osmotic tolerance. We identified 50 proteins whose abundance changed after exposure to caspofungin, including enzymes involved in cell wall biosynthesis and integrity, as well as the regulator of beta-1,3-glucan synthase activity, Rho1p. Exposure to caspofungin also increased the abundance of the proteins involved in oxidative and osmotic stress. The common adaptive responses shared by all three antifungal agents included proteins involved in carbohydrate metabolism. Some of these antifungal-responsive proteins may represent potential targets for the development of novel therapeutics that could enhance the antifungal activities of these drugs.

摘要

白色念珠菌是一种机会性人类真菌病原体,也是免疫功能低下患者发生浅部和深部真菌感染的原因。临床上最常使用的抗真菌药物包括唑类、多烯类和棘白菌素类。在本研究中,我们通过二维聚丙烯酰胺凝胶电泳和基质辅助激光解吸电离飞行时间质谱技术,在唑类(酮康唑)、多烯类(两性霉素 B)和棘白菌素类(卡泊芬净)抗真菌药物处理后,鉴定了白色念珠菌蛋白丰度的变化,以阐明其对这些抗真菌药物的适应反应。我们鉴定出 39 种蛋白,其丰度因酮康唑暴露而发生变化。其中一些蛋白参与麦角固醇生物合成,并与唑类耐药性相关。两性霉素 B 暴露改变了 43 种蛋白的丰度,包括与氧化应激和渗透耐受相关的蛋白。我们鉴定出 50 种蛋白,其丰度在接触卡泊芬净后发生变化,包括参与细胞壁生物合成和完整性的酶,以及β-1,3-葡聚糖合成酶活性的调节剂 Rho1p。卡泊芬净暴露还增加了参与氧化应激和渗透应激的蛋白的丰度。所有三种抗真菌药物共同的适应性反应包括参与碳水化合物代谢的蛋白。其中一些抗真菌反应蛋白可能代表潜在的治疗靶点,可增强这些药物的抗真菌活性。

相似文献

1
Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents.
Antimicrob Agents Chemother. 2010 May;54(5):1655-64. doi: 10.1128/AAC.00756-09. Epub 2010 Feb 9.
2
Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans.
Antimicrob Agents Chemother. 2005 Jun;49(6):2226-36. doi: 10.1128/AAC.49.6.2226-2236.2005.
6
Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans.
Antimicrob Agents Chemother. 2010 May;54(5):2096-111. doi: 10.1128/AAC.01638-09. Epub 2010 Mar 1.
7
Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.
PLoS Pathog. 2009 Jul;5(7):e1000532. doi: 10.1371/journal.ppat.1000532. Epub 2009 Jul 31.
8
Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans.
Antimicrob Agents Chemother. 2000 Apr;44(4):1108-11. doi: 10.1128/AAC.44.4.1108-1111.2000.
10
Mechanisms of echinocandin antifungal drug resistance.
Ann N Y Acad Sci. 2015 Sep;1354(1):1-11. doi: 10.1111/nyas.12831. Epub 2015 Jul 17.

引用本文的文献

1
Baicalin promotes β-1,3-glucan exposure in and enhances macrophage response.
Front Cell Infect Microbiol. 2024 Dec 9;14:1487173. doi: 10.3389/fcimb.2024.1487173. eCollection 2024.
4
Physiological and transcriptome analysis of in response to X33 antimicrobial oligopeptide treatment.
Front Cell Infect Microbiol. 2023 Jan 19;13:1123393. doi: 10.3389/fcimb.2023.1123393. eCollection 2023.
5
Multilocus Sequence Typing Clade I Contributes to the Clinical Phenotype of Vulvovaginal Candidiasis Patients.
Front Med (Lausanne). 2022 Apr 1;9:837536. doi: 10.3389/fmed.2022.837536. eCollection 2022.
8
What 'Omics can tell us about antifungal adaptation.
FEMS Yeast Res. 2022 Jan 11;21(8). doi: 10.1093/femsyr/foab070.

本文引用的文献

2
Upc2p-associated differential protein expression in Candida albicans.
Proteomics. 2009 Oct;9(20):4726-30. doi: 10.1002/pmic.200900176.
3
Identification of the Candida albicans Cap1p regulon.
Eukaryot Cell. 2009 Jun;8(6):806-20. doi: 10.1128/EC.00002-09. Epub 2009 Apr 24.
6
Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain.
J Proteome Res. 2007 Jun;6(6):2248-56. doi: 10.1021/pr060656c. Epub 2007 Apr 14.
7
Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species.
Free Radic Biol Med. 2007 May 1;42(9):1409-20. doi: 10.1016/j.freeradbiomed.2007.01.042. Epub 2007 Feb 1.
8
High-throughput proteomics processing of proteins in polyacrylamide in a multiwell format.
J Proteome Res. 2007 Apr;6(4):1603-8. doi: 10.1021/pr060472y. Epub 2007 Mar 17.
9
Proteomic analysis of the oxidative stress response in Candida albicans.
Proteomics. 2007 Mar;7(5):686-97. doi: 10.1002/pmic.200600575.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验