Suppr超能文献

应激源暴露会破坏肠道内的共生微生物种群,导致鼠柠檬酸杆菌的过度定植。

Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium.

机构信息

Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Infect Immun. 2010 Apr;78(4):1509-19. doi: 10.1128/IAI.00862-09. Epub 2010 Feb 9.

Abstract

The gastrointestinal tract is colonized by an enormous array of microbes that are known to have many beneficial effects on the host. Previous studies have indicated that stressor exposure can disrupt the stability of the intestinal microbiota, but the extent of these changes, as well as the effects on enteric infection, has not been well characterized. In order to examine the ability of stressors to induce changes in the gut microbiota, we exposed mice to a prolonged restraint stressor and then characterized microbial populations in the intestines using both traditional culture techniques and bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Exposure to the stressor led to an overgrowth of facultatively anaerobic microbiota while at the same time significantly reducing microbial richness and diversity in the ceca of stressed mice. Some of these effects could be explained by a stressor-induced reduction in the relative abundance of bacteria in the family Porphyromonadaceae. To determine whether these alterations would lead to increased pathogen colonization, stressed mice, as well as nonstressed controls, were challenged orally with the enteric murine pathogen Citrobacter rodentium. Exposure to the restraint stressor led to a significant increase in C. rodentium colonization over that in nonstressed control mice. The increased colonization was associated with increased tumor necrosis factor alpha (TNF-alpha) gene expression in colonic tissue. Together, these data demonstrate that a prolonged stressor can significantly change the composition of the intestinal microbiota and suggest that this disruption of the microbiota increases susceptibility to an enteric pathogen.

摘要

胃肠道定植着大量的微生物,这些微生物对宿主有许多有益的影响。先前的研究表明,应激源暴露会破坏肠道微生物群落的稳定性,但这些变化的程度以及对肠道感染的影响尚未得到很好的描述。为了研究应激源是否能诱导肠道微生物群落的变化,我们让小鼠暴露于长期的束缚应激源中,然后使用传统的培养技术和细菌标签编码 FLX 扩增子焦磷酸测序(bTEFAP)来描述肠道中的微生物种群。应激源的暴露导致兼性厌氧菌微生物群落过度生长,同时显著降低了应激小鼠盲肠中的微生物丰富度和多样性。这些影响中的一些可以通过应激源诱导的卟啉单胞菌科细菌相对丰度的降低来解释。为了确定这些改变是否会导致病原体定植增加,我们让应激小鼠和非应激对照小鼠经口感染肠道病原体柠檬酸杆菌 rodentium。暴露于束缚应激源导致柠檬酸杆菌 rodentium 在应激小鼠中的定植显著增加,超过了非应激对照小鼠。这种增加的定植与结肠组织中肿瘤坏死因子 alpha(TNF-alpha)基因表达的增加有关。总之,这些数据表明,长期的应激源可以显著改变肠道微生物群落的组成,并表明这种微生物群落的破坏增加了对肠道病原体的易感性。

相似文献

3
The commensal microbiota exacerbate infectious colitis in stressor-exposed mice.
Brain Behav Immun. 2017 Feb;60:44-50. doi: 10.1016/j.bbi.2016.09.010. Epub 2016 Sep 12.
5
Probiotic Lactobacillus reuteri attenuates the stressor-enhanced severity of Citrobacter rodentium infection.
Infect Immun. 2013 Sep;81(9):3253-63. doi: 10.1128/IAI.00278-13. Epub 2013 Jun 24.
6
Citrobacter amalonaticus Inhibits the Growth of Citrobacter rodentium in the Gut Lumen.
mBio. 2021 Oct 26;12(5):e0241021. doi: 10.1128/mBio.02410-21. Epub 2021 Oct 5.
7
Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids.
PLoS One. 2018 May 9;13(5):e0196961. doi: 10.1371/journal.pone.0196961. eCollection 2018.
8
9
Possible link between colonization of the gastrointestinal tract by Citrobacter rodentium in C57BL/6 mice and microbiota composition.
Microbiol Immunol. 2024 Jun;68(6):206-211. doi: 10.1111/1348-0421.13128. Epub 2024 Apr 21.
10

引用本文的文献

2
3
Restraint Stress Disrupted Intestinal Homeostasis via 5-HT/HTR7/Wnt/β-Catenin/NF-kB Signaling.
Int J Mol Sci. 2025 Apr 24;26(9):4021. doi: 10.3390/ijms26094021.
6
Magnesium Oxide Reduces Anxiety-like Behavior in Mice by Inhibiting Sulfate-Reducing Bacteria.
Microorganisms. 2024 Jul 14;12(7):1429. doi: 10.3390/microorganisms12071429.
8
An bloom in aging animals is restrained by the gut microbiome.
Aging Biol. 2024;2. doi: 10.59368/agingbio.20240024. Epub 2024 Mar 15.
10
Soil intake modifies the gut microbiota and alleviates Th2-type immune response in an ovalbumin-induced asthma mouse model.
World Allergy Organ J. 2024 Apr 14;17(4):100897. doi: 10.1016/j.waojou.2024.100897. eCollection 2024 Apr.

本文引用的文献

1
Repeated restraint stress increases IgA concentration in rat small intestine.
Brain Behav Immun. 2010 Jan;24(1):110-8. doi: 10.1016/j.bbi.2009.09.005. Epub 2009 Sep 11.
2
Decreased expression of colonic Slc26a3 and carbonic anhydrase iv as a cause of fatal infectious diarrhea in mice.
Infect Immun. 2009 Sep;77(9):3639-50. doi: 10.1128/IAI.00225-09. Epub 2009 Jun 22.
3
Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation.
Infect Immun. 2009 Jun;77(6):2367-75. doi: 10.1128/IAI.01520-08. Epub 2009 Mar 23.
4
A core gut microbiome in obese and lean twins.
Nature. 2009 Jan 22;457(7228):480-4. doi: 10.1038/nature07540. Epub 2008 Nov 30.
5
The Ribosomal Database Project: improved alignments and new tools for rRNA analysis.
Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5. doi: 10.1093/nar/gkn879. Epub 2008 Nov 12.
7
Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis.
Scand J Gastroenterol. 2009;44(2):180-6. doi: 10.1080/00365520802433231.
10
Molecular analysis of the gut microbiota of identical twins with Crohn's disease.
ISME J. 2008 Jul;2(7):716-27. doi: 10.1038/ismej.2008.37. Epub 2008 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验