Suppr超能文献

成功的基于网络的无烟气烟草戒烟项目中缺失二分类结局数据的建模。

Modeling missing binary outcome data in a successful web-based smokeless tobacco cessation program.

机构信息

Oregon Research Institute, 1715 Franklin Boulevard, Eugene, OR 97403, USA.

出版信息

Addiction. 2010 Jun;105(6):1005-15. doi: 10.1111/j.1360-0443.2009.02896.x. Epub 2010 Feb 8.

Abstract

AIM

To examine various methods to impute missing binary outcome from a web-based tobacco cessation intervention.

DESIGN

The ChewFree randomized controlled trial used a two-arm design to compare tobacco abstinence at both the 3- and 6-month follow-up for participants randomized to either an enhanced web-based intervention condition or a basic information-only control condition.

SETTING

Internet in the United States and Canada.

PARTICIPANTS

Secondary analyses focused upon 2523 participants in the ChewFree trial.

MEASUREMENTS

Point-prevalence tobacco abstinence measured at 3- and 6-month follow-up.

FINDINGS

The results of this study confirmed the findings for the original ChewFree trial and highlighted the use of different missing-data approaches to achieve intent-to-treat analyses when confronted with substantial attrition. The use of different imputation methods yielded results that differed in both the size of the estimated treatment effect and the standard errors.

CONCLUSIONS

The choice of imputation model used to analyze missing binary outcome data can affect substantially the size and statistical significance of the treatment effect. Without additional information about the missing cases, they can overestimate the effect of treatment. Multiple imputation methods are recommended, especially those that permit a sensitivity analysis of their impact.

摘要

目的

研究从基于网络的戒烟干预中缺失的二分类结局数据的多种填补方法。

设计

ChewFree 随机对照试验采用了两臂设计,比较了随机分配到强化型基于网络的干预组或基本信息对照组的参与者在 3 个月和 6 个月随访时的戒烟情况。

地点

美国和加拿大的互联网。

参与者

ChewFree 试验中的 2523 名参与者进行了二次分析。

测量

3 个月和 6 个月随访时的点 prevalence 烟草戒断情况。

结果

本研究的结果证实了原始 ChewFree 试验的结果,并强调了当面临大量失访时,使用不同的缺失数据方法进行意向治疗分析。使用不同的填补方法会导致估计治疗效果的大小和标准误差的差异。

结论

用于分析缺失二分类结局数据的填补模型的选择会显著影响治疗效果的大小和统计学意义。在没有关于缺失病例的额外信息的情况下,它们可能会高估治疗效果。建议使用多种填补方法,特别是那些允许对其影响进行敏感性分析的方法。

相似文献

引用本文的文献

2
Interventions for smokeless tobacco use cessation.无烟烟草使用戒断的干预措施。
Cochrane Database Syst Rev. 2025 Apr 15;4(4):CD015314. doi: 10.1002/14651858.CD015314.pub2.
6
Validation of a revised General Nutrition Knowledge Questionnaire for Australia.澳大利亚修订版一般营养知识问卷的验证。
Public Health Nutr. 2021 May;24(7):1608-1618. doi: 10.1017/S1368980019005135. Epub 2020 May 8.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验