Suppr超能文献

植物育种中的基因组选择:从理论到实践。

Genomic selection in plant breeding: from theory to practice.

机构信息

USDA-ARS, R.W. Holley Center for Agriculture and Health, Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA.

出版信息

Brief Funct Genomics. 2010 Mar;9(2):166-77. doi: 10.1093/bfgp/elq001. Epub 2010 Feb 15.

Abstract

We intuitively believe that the dramatic drop in the cost of DNA marker information we have experienced should have immediate benefits in accelerating the delivery of crop varieties with improved yield, quality and biotic and abiotic stress tolerance. But these traits are complex and affected by many genes, each with small effect. Traditional marker-assisted selection has been ineffective for such traits. The introduction of genomic selection (GS), however, has shifted that paradigm. Rather than seeking to identify individual loci significantly associated with a trait, GS uses all marker data as predictors of performance and consequently delivers more accurate predictions. Selection can be based on GS predictions, potentially leading to more rapid and lower cost gains from breeding. The objectives of this article are to review essential aspects of GS and summarize the important take-home messages from recent theoretical, simulation and empirical studies. We then look forward and consider research needs surrounding methodological questions and the implications of GS for long-term selection.

摘要

我们直观地认为,我们在 DNA 标记信息成本方面的大幅下降应该会立即带来加速提高作物产量、改善品质以及提高生物和非生物胁迫耐受性的好处。但是,这些特性较为复杂,受到许多基因的影响,每个基因的影响都较小。传统的标记辅助选择对于此类性状并不有效。然而,基因组选择 (GS) 的引入改变了这一模式。GS 不是试图识别与性状显著相关的单个基因座,而是利用所有标记数据作为性能预测因子,从而提供更准确的预测。选择可以基于 GS 预测,这可能会导致从育种中获得更快和更低成本的收益。本文的目的是回顾 GS 的基本方面,并总结最近的理论、模拟和实证研究的重要要点。然后,我们展望未来,并考虑围绕方法问题的研究需求以及 GS 对长期选择的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验