Suppr超能文献

用于单分子荧光成像与光谱分析的探测器。

Detectors for single-molecule fluorescence imaging and spectroscopy.

作者信息

Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S

机构信息

Department of Chemistry & Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095, USA.

出版信息

J Mod Opt. 2007 Jan 1;54(2-3):239. doi: 10.1080/09500340600769067.

Abstract

Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy.

摘要

单分子观测、表征及操控技术最近已成为化学、生物学和物理学等多个研究领域的前沿技术。由于具有极高的灵敏度、特异性以及消除总体平均效应,单分子荧光成像和光谱技术在短时间内已成为细胞生物学、生物化学和生物物理学中的重要工具。这些方法催生了关于生物过程的新思维方式,如病毒感染、受体扩散与寡聚化、细胞信号传导、蛋白质-蛋白质或蛋白质-核酸相互作用以及分子机器。要取得这些成果需要满足多个因素,其中探测器的灵敏度和带宽至关重要。我们在此研究这类实验中所使用的光电探测器所需的性能、不同类别探测器的当前技术水平,以及用于单分子成像和光谱的单光子计数探测器的实际和未来发展情况。

相似文献

1
Detectors for single-molecule fluorescence imaging and spectroscopy.
J Mod Opt. 2007 Jan 1;54(2-3):239. doi: 10.1080/09500340600769067.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors.
Biophys J. 2003 Sep;85(3):1948-58. doi: 10.1016/S0006-3495(03)74622-0.
4
Development of new photon-counting detectors for single-molecule fluorescence microscopy.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 24;368(1611):20120035. doi: 10.1098/rstb.2012.0035. Print 2013 Feb 5.
5
Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.
IEEE J Sel Top Quantum Electron. 2014 Nov;20(6):38044201-380442020. doi: 10.1109/JSTQE.2014.2341568.
6
Single-molecule biophysics: at the interface of biology, physics and chemistry.
J R Soc Interface. 2008 Jan 6;5(18):15-45. doi: 10.1098/rsif.2007.1021.
7
New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging.
Proc SPIE Int Soc Opt Eng. 2011 May 13;8033:803316. doi: 10.1117/12.883708.

引用本文的文献

1
Optimizing photon capture: advancements in amorphous silicon-based microchannel plates.
Commun Eng. 2025 Apr 7;4(1):64. doi: 10.1038/s44172-025-00394-6.
2
Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array.
J Biomed Opt. 2023 Jun;28(6):066502. doi: 10.1117/1.JBO.28.6.066502. Epub 2023 Jun 21.
3
Fluorescence Microscopy: a statistics-optics perspective.
ArXiv. 2023 Oct 17:arXiv:2304.01456v3.
4
Light sheet autofluorescence lifetime imaging with a single photon avalanche diode array.
bioRxiv. 2023 Feb 3:2023.02.01.526695. doi: 10.1101/2023.02.01.526695.
5
High Resolution Fluorescence Lifetime Maps from Minimal Photon Counts.
ACS Photonics. 2022 Mar 16;9(3):1015-1025. doi: 10.1021/acsphotonics.1c01936. Epub 2022 Feb 10.
7
Quantifying molecular- to cellular-level forces in living cells.
J Phys D Appl Phys. 2021 Dec 2;54(48). doi: 10.1088/1361-6463/ac2170. Epub 2021 Sep 9.
8
Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
Phys Rev X. 2020 Jan-Mar;10(1). doi: 10.1103/physrevx.10.011021. Epub 2020 Jan 30.
9
Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics.
Cell Rep Phys Sci. 2020 Nov 18;1(11). doi: 10.1016/j.xcrp.2020.100234. Epub 2020 Oct 14.
10
Custom silicon technology for SPAD-arrays with red-enhanced sensitivity and low timing jitter.
Opt Express. 2021 Feb 1;29(3):4559-4581. doi: 10.1364/OE.413821.

本文引用的文献

1
Ten Years of Single-Molecule Spectroscopy.
J Phys Chem A. 2000 Jan 13;104(1):1-16. doi: 10.1021/jp992505l.
2
Development of an ultrafast single photon counting imager for single molecule imaging.
Proc SPIE Int Soc Opt Eng. 2006 Feb;6092. doi: 10.1117/12.658191.
4
Ultrafast microchannel plate photomultipliers.
Appl Opt. 1988 Mar 15;27(6):1170-8. doi: 10.1364/AO.27.001170.
5
High Speed Multichannel Charge Sensitive Data Acquisition System with Self-Triggered Event Timing.
IEEE Trans Nucl Sci. 2009 Jun 16;56(3):1148-1152. doi: 10.1109/TNS.2009.2015302.
7
One-dimensional photon-counting detector array for use at EUV and soft x-ray wavelengths.
Appl Opt. 1975 Jul 1;14(7):1632-44. doi: 10.1364/AO.14.001632.
8
Time-gated biological imaging by use of colloidal quantum dots.
Opt Lett. 2001 Jun 1;26(11):825-7. doi: 10.1364/ol.26.000825.
9
Simultaneous time- and wavelength-resolved fluorescence microscopy of single molecules.
J Phys Chem B. 2005 Aug 25;109(33):15691-8. doi: 10.1021/jp050465h.
10
Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4457-62. doi: 10.1073/pnas.0508047103. Epub 2006 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验