Suppr超能文献

利用光学参量振荡器将双光子活体显微镜扩展到红外波段。

Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator.

机构信息

Cecilie Vogt Klinik, Charité-University Medicine Berlin, Berlin, Germany.

出版信息

Biophys J. 2010 Feb 17;98(4):715-23. doi: 10.1016/j.bpj.2009.10.035.

Abstract

Chronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.g., chronic neuroinflammation) necessitating the use of fluorescent proteins. Expanding the wavelength excitation farther to the infrared overcomes the current limitations of standard Titanium:Sapphire laser excitation, leading to 1), simultaneous imaging of fluorophores with largely different excitation and emission spectra (e.g., GFP-derivatives and RFP-derivatives); and 2), higher penetration depths in tissue (up to 80%) at higher resolution and with reduced photobleaching and phototoxicity. This tool opens up new opportunities for deep-tissue imaging and will have a tremendous impact on the choice of protein fluorophores for intravital applications in bioscience and biomedicine, as we demonstrate in this work.

摘要

慢性炎症存在于各种器官中,如大脑,这意味着不同亚群的免疫细胞与靶器官的细胞相互作用。为了在形态和功能上监测这种细胞间通讯,能够在深部组织中可视化超过两种颜色是必不可少的。在这里,我们展示了基于光参量振荡器(OPO)的双光子激光扫描显微镜在中枢神经系统和免疫系统的难以接近的器官中进行动态活体成像的强大功能,对于需要使用荧光蛋白的长期病理机制研究(例如慢性神经炎症)具有特别重要的意义。将波长激发扩展到红外区域,克服了标准钛宝石激光激发的当前限制,从而实现了 1)具有很大不同激发和发射光谱的荧光团的同时成像(例如 GFP 衍生物和 RFP 衍生物);以及 2)在更高分辨率下,在组织中的穿透深度更高(高达 80%),同时减少了光漂白和光毒性。该工具为深部组织成像开辟了新的机会,并将对生物科学和生物医学中活体应用的蛋白质荧光团的选择产生巨大影响,正如我们在这项工作中所展示的那样。

相似文献

1
Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator.
Biophys J. 2010 Feb 17;98(4):715-23. doi: 10.1016/j.bpj.2009.10.035.
2
High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy.
Biochem Biophys Res Commun. 2002 Mar 15;291(5):1272-5. doi: 10.1006/bbrc.2002.6587.
3
Peak multiphoton excitation of mCherry using an optical parametric oscillator (OPO).
J Fluoresc. 2009 Nov;19(6):1103-9. doi: 10.1007/s10895-009-0510-y. Epub 2009 Jul 10.
4
Two-Photon Excitation Spectra of Various Fluorescent Proteins within a Broad Excitation Range.
Int J Mol Sci. 2022 Nov 2;23(21):13407. doi: 10.3390/ijms232113407.
10
2PE-STED microscopy with a single Ti:sapphire laser for reduced illumination.
PLoS One. 2014 Feb 6;9(2):e88464. doi: 10.1371/journal.pone.0088464. eCollection 2014.

引用本文的文献

1
Photobleaching Analysis of Fluorescent Proteins in Two-Photon Microscopy at High Repetition Rates.
Opt Commun. 2025 Jan 1;574. doi: 10.1016/j.optcom.2024.131059. Epub 2024 Sep 3.
4
Multiphoton intravital microscopy of rodents.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00168-w. Epub 2022 Nov 10.
5
Two-Photon Excitation Spectra of Various Fluorescent Proteins within a Broad Excitation Range.
Int J Mol Sci. 2022 Nov 2;23(21):13407. doi: 10.3390/ijms232113407.
6
Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images.
IEEE J Transl Eng Health Med. 2022 Sep 14;10:1800812. doi: 10.1109/JTEHM.2022.3206488. eCollection 2022.
7
Two-Photon Absorption: An Open Door to the NIR-II Biological Window?
Front Chem. 2022 Jun 24;10:921354. doi: 10.3389/fchem.2022.921354. eCollection 2022.
8
Multi-Color Two-Photon Microscopic Imaging Based on a Single-Wavelength Excitation.
Biosensors (Basel). 2022 May 6;12(5):307. doi: 10.3390/bios12050307.
9
Multiphoton Bleaching of Red Fluorescent Proteins and the Ways to Reduce It.
Int J Mol Sci. 2022 Jan 11;23(2):770. doi: 10.3390/ijms23020770.
10
Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2025813118.

本文引用的文献

2
Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging.
Curr Opin Biotechnol. 2009 Feb;20(1):54-62. doi: 10.1016/j.copbio.2009.02.008. Epub 2009 Mar 25.
3
Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization.
Brain. 2009 May;132(Pt 5):1247-58. doi: 10.1093/brain/awn354. Epub 2009 Jan 29.
4
Image filtering for two-photon deep imaging of lymphonodes.
Eur Biophys J. 2008 Jul;37(6):979-87. doi: 10.1007/s00249-008-0323-y. Epub 2008 Apr 4.
5
Noninvasive in vivo imaging of pancreatic islet cell biology.
Nat Med. 2008 May;14(5):574-8. doi: 10.1038/nm1701. Epub 2008 Mar 7.
6
Intravital two-photon microscopy: focus on speed and time resolved imaging modalities.
Immunol Rev. 2008 Feb;221:7-25. doi: 10.1111/j.1600-065X.2008.00582.x.
7
Two-photon excitation microscopy for the study of living cells and tissues.
Curr Protoc Cell Biol. 2003 Nov;Chapter 4:Unit 4.11. doi: 10.1002/0471143030.cb0411s20.
8
Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs.
Annu Rev Immunol. 2008;26:585-626. doi: 10.1146/annurev.immunol.24.021605.090620.
9
Photobleaching in two-photon scanning fluorescence correlation spectroscopy.
Chemphyschem. 2008 Jan 11;9(1):147-58. doi: 10.1002/cphc.200700579.
10
New angles on neuronal dendrites in vivo.
J Neurophysiol. 2007 Dec;98(6):3770-9. doi: 10.1152/jn.00850.2007. Epub 2007 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验