Suppr超能文献

基于纳腔介电谱的适体蛋白检测

Nanogap dielectric spectroscopy for aptamer-based protein detection.

机构信息

Microelectronics Research Center, New Jersey Institute of Technology, Newark, New Jersey, USA.

出版信息

Biophys J. 2010 Feb 17;98(4):724-32. doi: 10.1016/j.bpj.2009.10.042.

Abstract

Among the various label-free methods for monitoring biomolecular interactions, capacitive sensors stand out due to their simple instrumentation and compatibility with multiplex formats. However, electrode polarization due to ion gradient formation and noise from solution conductance limited early dielectric spectroscopic measurements to high frequencies only, which in turn limited their sensitivity to biomolecular interactions, as the applied excitation signals were too fast for the charged macromolecules to respond. To minimize electrode polarization effects, capacitive sensors with 20 nm electrode separation were fabricated using silicon dioxide sacrificial layer techniques. The nanoscale separation of the capacitive electrodes in the sensor results in an enhanced overlapping of electrical double layers, and apparently a more ordered "ice-like" water structure. Such effects in turn reduce low frequency contributions from bulk sample resistance and from electrode polarization, and thus markedly enhance sensitivity toward biomolecular interactions. Using these nanogap capacitive sensors, highly sensitive, label-free aptamer-based detection of protein molecules is achieved.

摘要

在监测生物分子相互作用的各种无标记方法中,基于电容的传感器因其仪器简单且与多重格式兼容而脱颖而出。然而,由于离子梯度形成引起的电极极化和溶液电导率产生的噪声,早期的介电光谱测量仅局限于高频,这反过来又限制了它们对生物分子相互作用的灵敏度,因为施加的激励信号对于带电荷的大分子来说太快了,以至于它们无法响应。为了最小化电极极化效应,使用二氧化硅牺牲层技术制造了电极间隔为 20nm 的电容传感器。传感器中电容电极的纳米级分离导致电双层的重叠增强,并且显然形成更有序的“类冰”水结构。这些效应反过来又降低了来自体样本电阻和电极极化的低频贡献,从而显著提高了对生物分子相互作用的灵敏度。使用这些纳米间隙电容传感器,实现了基于适配体的高灵敏度、无标记的蛋白质分子检测。

相似文献

1
Nanogap dielectric spectroscopy for aptamer-based protein detection.
Biophys J. 2010 Feb 17;98(4):724-32. doi: 10.1016/j.bpj.2009.10.042.
3
Impedance-Based Nanoporous Anodized Alumina/ITO Platforms for Label-Free Biosensors.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):150-158. doi: 10.1021/acsami.1c17243. Epub 2021 Dec 22.
5
Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement.
Biosens Bioelectron. 2009 Sep 15;25(1):94-9. doi: 10.1016/j.bios.2009.06.001. Epub 2009 Jun 10.
7
Reusable impedimetric aptasensor.
Anal Chem. 2005 Oct 1;77(19):6320-3. doi: 10.1021/ac0505775.
8
Detection for folding of the thrombin binding aptamer using label-free electrochemical methods.
BMB Rep. 2008 Feb 29;41(2):126-31. doi: 10.5483/bmbrep.2008.41.2.126.
9
Nanogap biosensors for electrical and label-free detection of biomolecular interactions.
Nanotechnology. 2009 Nov 11;20(45):455502. doi: 10.1088/0957-4484/20/45/455502. Epub 2009 Oct 13.
10
Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence.
Chem Commun (Camb). 2010 Jan 28;46(4):595-7. doi: 10.1039/b916304b. Epub 2009 Nov 17.

引用本文的文献

1
Strategies for Improving Small-Molecule Biosensors in Bacteria.
Biosensors (Basel). 2022 Jan 25;12(2):64. doi: 10.3390/bios12020064.
3
Single-step label-free nanowell immunoassay accurately quantifies serum stress hormones within minutes.
Sci Adv. 2021 Jun 30;7(27). doi: 10.1126/sciadv.abf4401. Print 2021 Jun.
4
Going beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors.
ACS Nano. 2020 Dec 22;14(12):16194-16201. doi: 10.1021/acsnano.0c08622. Epub 2020 Nov 23.
5
Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.
Sensors (Basel). 2016 Dec 14;16(12):2128. doi: 10.3390/s16122128.

本文引用的文献

1
Improvement of Aptamer Affinity by Dimerization.
Sensors (Basel). 2008 Feb 19;8(2):1090-1098. doi: 10.3390/s8021090.
2
Theory of the stability of lyophobic colloids.
J Phys Colloid Chem. 1947 May;51(3):631-6. doi: 10.1021/j150453a001.
4
Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE.
Biosens Bioelectron. 2009 Apr 15;24(8):2499-503. doi: 10.1016/j.bios.2008.12.036. Epub 2009 Jan 4.
5
Using electrical impedance spectroscopy to detect water in planetary regoliths.
Astrobiology. 2008 Aug;8(4):781-92. doi: 10.1089/ast.2007.0180.
6
Attractive forces between cation condensed DNA double helices.
Biophys J. 2008 Jun;94(12):4775-82. doi: 10.1529/biophysj.107.127332. Epub 2008 Mar 7.
7
Relaxation processes due to the electrode-electrolyte interface in ionic solutions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051505. doi: 10.1103/PhysRevE.74.051505. Epub 2006 Nov 20.
8
Theoretical and experimental study towards a nanogap dielectric biosensor.
Biosens Bioelectron. 2005 Jan 15;20(7):1320-6. doi: 10.1016/j.bios.2004.05.003.
9
Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications.
Curr Med Chem. 2001 Aug;8(10):1213-44. doi: 10.2174/0929867013372463.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验