Shah Abhik, Woolf Peter
Department of Chemical Engineering, 3320 G.G. Brown, Ann Arbor, MI 48103, USA.
J Mach Learn Res. 2009 Jun 1;10:159-162.
In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing.
在本文中,我们介绍了pebl,这是一个用于从数据和先验知识中学习贝叶斯网络结构的Python库及应用程序,它提供了其他软件包所没有的功能:使用干预数据的能力、结构先验的灵活指定、对隐藏变量进行建模以及利用并行处理。