Laboratoire de Neurobiologie des Processus Adaptatifs, UMR 7102 CNRS/UPMC, Univ. P. et M. Curie, Bat B, 6Eme Etage, Case Courrier 12, 9 Quai St. Bernard, 75252 Paris, France.
Neurotox Res. 2011 Jan;19(1):149-61. doi: 10.1007/s12640-010-9152-8. Epub 2010 Feb 17.
Degeneration of central axons may occur following injury or due to various diseases and it involves complex molecular mechanisms that need to be elucidated. Existing in vitro axotomy models are difficult to perform, and they provide limited information on the localization of events along the axon. We present here a novel experimental model system, based on microfluidic isolation, which consists of three distinct compartments, interconnected by parallel microchannels allowing axon outgrowth. Neurons cultured in one compartment successfully elongated their axons to cross a short central compartment and invade the outermost compartment. This design provides an interesting model system for studying axonal degeneration and death mechanisms, with a previously impossible spatial and temporal control on specific molecular pathways. We provide a proof-of-concept of the system by reporting its application to a well-characterized experimental paradigm, axotomy-induced Wallerian degeneration in primary central neurons. Using this model, we applied localized central axotomy by a brief, isolated flux of detergent. We report that mouse embryonic cortical neurons exhibit rapid Wallerian-like distal degeneration but no somatic death following central axotomy. Distal axons show progressive degeneration leading to axonal beading and cytoskeletal fragmentation within a few hours after axotomy. Degeneration is asynchronous, reminiscent of in vivo Wallerian degeneration. Axonal cytoskeletal fragmentation is significantly delayed with nicotinamide adenine dinucleotide pretreatment, but it does not change when distal calpain or caspase activity is inhibited. These findings, consistent with previous experiments in vivo, confirm the power and biological relevance of this microfluidic architecture.
中枢轴突的退化可能发生在损伤后,也可能由于各种疾病,涉及到需要阐明的复杂分子机制。现有的体外轴突切断模型难以进行,并且它们提供的关于轴突内事件定位的信息有限。我们在这里提出了一种新的实验模型系统,基于微流控隔离,该系统由三个不同的隔室组成,通过平行微通道相互连接,允许轴突生长。在一个隔室中培养的神经元成功地使它们的轴突伸长,穿过短的中央隔室并侵入最外面的隔室。这种设计为研究轴突退化和死亡机制提供了一个有趣的模型系统,具有以前对特定分子途径进行时空控制的可能性。我们通过报告其在一个经过充分表征的实验范例中的应用,即原代中枢神经元的轴突切断诱导的 Wallerian 变性,为该系统提供了一个概念验证。使用该模型,我们通过短暂的、孤立的去污剂通量进行了中央轴突的局部切断。我们报告说,小鼠胚胎皮质神经元在中央轴突切断后表现出快速的 Wallerian 样远端退化,但没有体细胞死亡。远端轴突在轴突切断后数小时内表现出进行性退化,导致轴突珠化和细胞骨架碎片化。退化是异步的,类似于体内 Wallerian 变性。用烟酰胺腺嘌呤二核苷酸预处理可显著延迟轴突细胞骨架碎片化,但当抑制远端钙蛋白酶或半胱天冬酶活性时,不会改变。这些与体内先前实验一致的发现证实了这种微流控结构的强大功能和生物学相关性。