Suppr超能文献

物质波干涉实现的引力红移的精密测量。

A precision measurement of the gravitational redshift by the interference of matter waves.

机构信息

Department of Physics, 366 Le Conte Hall MS 7300, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2010 Feb 18;463(7283):926-9. doi: 10.1038/nature08776.

Abstract

One of the central predictions of metric theories of gravity, such as general relativity, is that a clock in a gravitational potential U will run more slowly by a factor of 1 + U/c(2), where c is the velocity of light, as compared to a similar clock outside the potential. This effect, known as gravitational redshift, is important to the operation of the global positioning system, timekeeping and future experiments with ultra-precise, space-based clocks (such as searches for variations in fundamental constants). The gravitational redshift has been measured using clocks on a tower, an aircraft and a rocket, currently reaching an accuracy of 7 x 10(-5). Here we show that laboratory experiments based on quantum interference of atoms enable a much more precise measurement, yielding an accuracy of 7 x 10(-9). Our result supports the view that gravity is a manifestation of space-time curvature, an underlying principle of general relativity that has come under scrutiny in connection with the search for a theory of quantum gravity. Improving the redshift measurement is particularly important because this test has been the least accurate among the experiments that are required to support curved space-time theories.

摘要

一种中心预测度规理论的引力,如广义相对论,是一个时钟在一个潜在的 U 将运行更慢的因素 1 + U/c(2),其中 c 是光速,相对于一个类似的时钟外的潜力。这种影响,称为引力红移,是很重要的操作全球定位系统,计时和未来的实验与超精确,基于空间的时钟(如搜索变化的基本常数)。引力红移已经测量使用时钟在塔,一架飞机和火箭,目前达到的精度为 7 x 10(-5)。在这里,我们表明,基于原子的量子干涉的实验室实验可以进行更精确的测量,产生的精度为 7 x 10(-9)。我们的结果支持这样的观点,即引力是一种表现时空曲率,广义相对论的基本原则,已受到审查与寻找量子引力理论。提高红移的测量是特别重要的,因为这个测试是最不准确的实验中需要支持弯曲的时空理论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验