Suppr超能文献

评判大量的 P 值:如何应对多重检验问题——关于科学出版物评估系列的第 10 部分。

Judging a plethora of p-values: how to contend with the problem of multiple testing--part 10 of a series on evaluation of scientific publications.

机构信息

Institut für medizinische Biometrie, Epidemiologie und Informatik Mainz, Germany.

出版信息

Dtsch Arztebl Int. 2010 Jan;107(4):50-6. doi: 10.3238/arztebl.2010.0050. Epub 2010 Jan 29.

Abstract

BACKGROUND

When reading reports of medical research findings, one is usually confronted with p-values. Publications typically contain not just one p-value, but an abundance of them, mostly accompanied by the word "significant." This article is intended to help readers understand the problem of multiple p-values and how to deal with it.

METHODS

When multiple p-values appear in a single study, this is usually a problem of multiple testing. A number of valid approaches are presented for dealing with the problem. This article is based on classical statistical methods as presented in many textbooks and on selected specialized literature.

RESULTS

Conclusions from publications with many "significant" results should be judged with caution if the authors have not taken adequate steps to correct for multiple testing. Researchers should define the goal of their study clearly at the outset and, if possible, define a single primary endpoint a priori. If the study is of an exploratory or hypothesis-generating nature, it should be clearly stated that any positive results might be due to chance and will need to be confirmed in further targeted studies.

CONCLUSIONS

It is recommended that the word "significant" be used and interpreted with care. Readers should assess articles critically with regard to the problem of multiple testing. Authors should state the number of tests that were performed. Scientific articles should be judged on their scientific merit rather than by the number of times they contain the word "significant."

摘要

背景

阅读医学研究报告时,人们通常会遇到 p 值。出版物中通常不仅包含一个 p 值,而是大量的 p 值,其中大多数都伴随着“显著”一词。本文旨在帮助读者理解多个 p 值的问题以及如何处理它。

方法

当单个研究中出现多个 p 值时,这通常是多重检验的问题。本文提出了一些有效的方法来处理这个问题。本文基于许多教科书中以及一些专业文献中所呈现的经典统计方法。

结果

如果作者没有采取适当的措施来纠正多重检验,那么对于有许多“显著”结果的出版物的结论应该谨慎判断。研究人员应该在一开始就明确研究的目标,如果可能的话,事先定义一个单一的主要终点。如果研究具有探索性或产生假说的性质,则应明确说明任何阳性结果可能是由于偶然因素引起的,需要在进一步的靶向研究中加以证实。

结论

建议谨慎使用和解释“显著”一词。读者应根据多重检验的问题批判性地评估文章。作者应说明进行了多少次测试。应该根据科学价值而不是包含“显著”一词的次数来评判科学文章。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
How to deal with multiple endpoints in clinical trials.如何处理临床试验中的多个终点。
Fundam Clin Pharmacol. 2006 Dec;20(6):515-23. doi: 10.1111/j.1472-8206.2006.00437.x.
7
Reliably picking the best endpoint.可靠地选择最佳终点。
Stat Med. 2018 Dec 20;37(29):4374-4385. doi: 10.1002/sim.7927. Epub 2018 Aug 8.
8
Meta-analysis: Problems with Russian Publications.荟萃分析:俄罗斯出版物存在的问题。
Int J Risk Saf Med. 2015;27 Suppl 1:S89-90. doi: 10.3233/JRS-150702.

引用本文的文献

本文引用的文献

2
Genomewide association analysis of coronary artery disease.冠状动脉疾病的全基因组关联分析。
N Engl J Med. 2007 Aug 2;357(5):443-53. doi: 10.1056/NEJMoa072366. Epub 2007 Jul 18.
7
Association study designs for complex diseases.复杂疾病的关联研究设计
Nat Rev Genet. 2001 Feb;2(2):91-9. doi: 10.1038/35052543.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验