Suppr超能文献

用于药物发现的生成网络复合体(GNC)

Generative network complex (GNC) for drug discovery.

作者信息

Grow Christopher, Gao Kaifu, Nguyen Duc Duy, Wei Guo-Wei

机构信息

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Commun Inf Syst. 2019;19(3):241-277. doi: 10.4310/cis.2019.v19.n3.a2.

Abstract

It remains a challenging task to generate a vast variety of novel compounds with desirable pharmacological properties. In this work, a generative network complex (GNC) is proposed as a new platform for designing novel compounds, predicting their physical and chemical properties, and selecting potential drug candidates that fulfill various druggable criteria such as binding affinity, solubility, partition coefficient, etc. We combine a SMILES string generator, which consists of an encoder, a drug-property controlled or regulated latent space, and a decoder, with verification deep neural networks, a target-specific three-dimensional (3D) pose generator, and mathematical deep learning networks to generate new compounds, predict their drug properties, construct 3D poses associated with target proteins, and reevaluate druggability, respectively. New compounds were generated in the latent space by either randomized output, controlled output, or optimized output. In our demonstration, 2.08 million and 2.8 million novel compounds are generated respectively for Cathepsin S and BACE targets. These new compounds are very different from the seeds and cover a larger chemical space. For potentially active compounds, their 3D poses are generated using a state-of-the-art method. The resulting 3D complexes are further evaluated for druggability by a championing deep learning algorithm based on algebraic topology, differential geometry, and algebraic graph theories. Performed on supercomputers, the whole process took less than one week. Therefore, our GNC is an efficient new paradigm for discovering new drug candidates.

摘要

生成具有理想药理特性的大量新型化合物仍然是一项具有挑战性的任务。在这项工作中,提出了一种生成网络复合体(GNC)作为设计新型化合物、预测其物理和化学性质以及选择满足各种可成药标准(如结合亲和力、溶解度、分配系数等)的潜在药物候选物的新平台。我们将一个由编码器、药物性质控制或调节的潜在空间和解码器组成的SMILES字符串生成器与验证深度神经网络、目标特异性三维(3D)构象生成器和数学深度学习网络相结合,分别用于生成新化合物、预测其药物性质、构建与靶蛋白相关的3D构象以及重新评估可成药性。通过随机输出、控制输出或优化输出在潜在空间中生成新化合物。在我们的演示中,分别为组织蛋白酶S和β-分泌酶(BACE)靶点生成了208万和280万种新型化合物。这些新化合物与种子化合物有很大不同,并且覆盖了更大的化学空间。对于潜在活性化合物,使用一种先进的方法生成其3D构象。基于代数拓扑、微分几何和代数图论的先进深度学习算法进一步评估所得3D复合物的可成药性。在超级计算机上进行,整个过程耗时不到一周。因此,我们的GNC是发现新药物候选物的一种高效新范式。

相似文献

1
Generative network complex (GNC) for drug discovery.用于药物发现的生成网络复合体(GNC)
Commun Inf Syst. 2019;19(3):241-277. doi: 10.4310/cis.2019.v19.n3.a2.
4
Generative Network Complex for the Automated Generation of Drug-like Molecules.用于自动生成类药物分子的生成网络复合体
J Chem Inf Model. 2020 Dec 28;60(12):5682-5698. doi: 10.1021/acs.jcim.0c00599. Epub 2020 Aug 7.
6
MathDL: mathematical deep learning for D3R Grand Challenge 4.MathDL:用于 D3R 大挑战 4 的数学深度学习。
J Comput Aided Mol Des. 2020 Feb;34(2):131-147. doi: 10.1007/s10822-019-00237-5. Epub 2019 Nov 16.

引用本文的文献

6
Generative Network Complex for the Automated Generation of Drug-like Molecules.用于自动生成类药物分子的生成网络复合体
J Chem Inf Model. 2020 Dec 28;60(12):5682-5698. doi: 10.1021/acs.jcim.0c00599. Epub 2020 Aug 7.
7
Machine intelligence design of 2019-nCoV drugs.2019新型冠状病毒药物的机器智能设计
bioRxiv. 2020 Feb 4:2020.01.30.927889. doi: 10.1101/2020.01.30.927889.
8
A review of mathematical representations of biomolecular data.生物分子数据的数学表示方法综述。
Phys Chem Chem Phys. 2020 Feb 26;22(8):4343-4367. doi: 10.1039/c9cp06554g.

本文引用的文献

2
MathDL: mathematical deep learning for D3R Grand Challenge 4.MathDL:用于 D3R 大挑战 4 的数学深度学习。
J Comput Aided Mol Des. 2020 Feb;34(2):131-147. doi: 10.1007/s10822-019-00237-5. Epub 2019 Nov 16.
5
Shape-Based Generative Modeling for de Novo Drug Design.基于形状的从头药物设计生成模型。
J Chem Inf Model. 2019 Mar 25;59(3):1205-1214. doi: 10.1021/acs.jcim.8b00706. Epub 2019 Feb 28.
6
DG-GL: Differential geometry-based geometric learning of molecular datasets.基于微分几何的分子数据集的几何学习。
Int J Numer Method Biomed Eng. 2019 Mar;35(3):e3179. doi: 10.1002/cnm.3179. Epub 2019 Feb 7.
9
Deep reinforcement learning for de novo drug design.基于深度强化学习的从头药物设计。
Sci Adv. 2018 Jul 25;4(7):eaap7885. doi: 10.1126/sciadv.aap7885. eCollection 2018 Jul.
10
Conditional Molecular Design with Deep Generative Models.条件分子设计与深度生成模型。
J Chem Inf Model. 2019 Jan 28;59(1):43-52. doi: 10.1021/acs.jcim.8b00263. Epub 2018 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验