Suppr超能文献

准确积累剂量以更好地了解正常组织中的辐射效应。

Accurate accumulation of dose for improved understanding of radiation effects in normal tissue.

机构信息

Princess Margaret Hospital, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.

出版信息

Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S135-9. doi: 10.1016/j.ijrobp.2009.06.093.

Abstract

The actual distribution of radiation dose accumulated in normal tissues over the complete course of radiation therapy is, in general, poorly quantified. Differences in the patient anatomy between planning and treatment can occur gradually (e.g., tumor regression, resolution of edema) or relatively rapidly (e.g., bladder filling, breathing motion) and these undermine the accuracy of the planned dose distribution. Current efforts to maximize the therapeutic ratio require models that relate the true accumulated dose to clinical outcome. The needed accuracy can only be achieved through the development of robust methods that track the accumulation of dose within the various tissues in the body. Specific needs include the development of segmentation methods, tissue-mapping algorithms, uncertainty estimation, optimal schedules for image-based monitoring, and the development of informatics tools to support subsequent analysis. These developments will not only improve radiation outcomes modeling but will address the technical demands of the adaptive radiotherapy paradigm. The next 5 years need to see academia and industry bring these tools into the hands of the clinician and the clinical scientist.

摘要

在放射治疗过程中,正常组织中累积辐射剂量的实际分布通常难以精确定量。计划和治疗之间的患者解剖结构差异可能逐渐发生(例如肿瘤消退、水肿消退),也可能相对较快发生(例如膀胱充盈、呼吸运动),这会破坏计划剂量分布的准确性。目前,为了最大限度地提高治疗效果,需要建立将真实累积剂量与临床结果相关联的模型。只有通过开发能够跟踪体内各种组织中剂量累积的稳健方法,才能实现所需的准确性。具体需求包括开发分割方法、组织映射算法、不确定性估计、基于图像监测的最佳时间表,以及开发信息学工具以支持后续分析。这些发展不仅将改善放射治疗结果建模,还将满足自适应放射治疗范例的技术要求。未来 5 年,学术界和工业界需要将这些工具交到临床医生和临床科学家手中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验