Suppr超能文献

将基因数据纳入纵向社会科学调查与研究的前景与挑战。

The promise and challenges of incorporating genetic data into longitudinal social science surveys and research.

作者信息

Conley Dalton

机构信息

New York University, New York, New York 10003, USA.

出版信息

Biodemography Soc Biol. 2009;55(2):238-51. doi: 10.1080/19485560903415807.

Abstract

In this paper, I argue that social science and genomics can be integrated; however, the way this marriage is currently occurring rests on spurious methods and assumptions and, as a result, will yield few lasting insights. However, recent advances in both econometrics and in developmental genomics provide scientists with a novel opportunity to understand how genes and environment interact to produce social outcomes. Key to any causal inference about the interplay between genes and social environment is that either genotype be exogenously manipulated (i.e. through sibling fixed effects) while environmental conditions are held constant, and/or that environmental variation is exogenous in nature, i.e. experimental or arising from a natural experiment of sorts. Further, initial allele selection should be motivated by findings from genetic experiments in model animal studies linked to orthologous human genes. Likewise, genetic associations found in human population studies should then be tested through knock-out and over-expression studies in model organisms.

摘要

在本文中,我认为社会科学和基因组学能够实现整合;然而,当前这种结合的方式基于虚假的方法和假设,因此难以产生持久的深刻见解。不过,计量经济学和发育基因组学的最新进展为科学家提供了一个全新的契机,去理解基因与环境如何相互作用以产生社会结果。对于基因与社会环境之间相互作用的任何因果推断而言,关键在于要么在环境条件保持不变的情况下对外源基因型进行操纵(即通过同胞固定效应),要么环境变异本质上是外生的,即实验性的或源于某种自然实验。此外,初始等位基因的选择应以与直系同源人类基因相关的模式动物研究中的遗传实验结果为依据。同样,在人类群体研究中发现的基因关联随后应通过模式生物中的基因敲除和过表达研究进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验