Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
J Bacteriol. 2010 May;192(9):2335-45. doi: 10.1128/JB.01654-09. Epub 2010 Feb 26.
Prevotella bryantii B(1)4 is a member of the phylum Bacteroidetes and contributes to the degradation of hemicellulose in the rumen. The genome of P. bryantii harbors four genes predicted to encode glycoside hydrolase (GH) family 3 (GH3) enzymes. To evaluate whether these genes encode enzymes with redundant biological functions, each gene was cloned and expressed in Escherichia coli. Biochemical analysis of the recombinant proteins revealed that the enzymes exhibit different substrate specificities. One gene encoded a cellodextrinase (CdxA), and three genes encoded beta-xylosidase enzymes (Xyl3A, Xyl3B, and Xyl3C) with different specificities for either para-nitrophenyl (pNP)-linked substrates or substituted xylooligosaccharides. To identify the amino acid residues that contribute to catalysis and substrate specificity within this family of enzymes, the roles of conserved residues (R177, K214, H215, M251, and D286) in Xyl3B were probed by site-directed mutagenesis. Each mutation led to a severely decreased catalytic efficiency without a change in the overall structure of the mutant enzymes. Through amino acid sequence alignments, an amino acid residue (E115) that, when mutated to aspartic acid, resulted in a 14-fold decrease in the k(cat)/K(m) for pNP-beta-d-xylopyranoside (pNPX) with a concurrent 1.1-fold increase in the k(cat)/K(m) for pNP-beta-d-glucopyranoside (pNPG) was identified. Amino acid residue E115 may therefore contribute to the discrimination between beta-xylosides and beta-glucosides. Our results demonstrate that each of the four GH3 enzymes has evolved to perform a specific role in lignopolysaccharide hydrolysis and provide insight into the role of active-site residues in catalysis and substrate specificity for GH3 enzymes.
栖粪杆菌 B(1)4 是拟杆菌门的一个成员,有助于瘤胃中半纤维素的降解。栖粪杆菌的基因组含有四个预测编码糖苷水解酶 (GH)家族 3 (GH3)酶的基因。为了评估这些基因是否编码具有冗余生物学功能的酶,每个基因都在大肠杆菌中进行了克隆和表达。对重组蛋白的生化分析表明,这些酶具有不同的底物特异性。一个基因编码纤维二糖酶 (CdxA),三个基因编码具有不同的对 pNP-连接底物或取代木寡糖的特异性的β-木糖苷酶 (Xyl3A、Xyl3B 和 Xyl3C)。为了确定该酶家族中与催化和底物特异性相关的氨基酸残基,通过定点突变研究了 Xyl3B 中保守残基 (R177、K214、H215、M251 和 D286) 的作用。每个突变都导致催化效率严重降低,而突变酶的整体结构没有改变。通过氨基酸序列比对,鉴定出一个氨基酸残基 (E115),当突变为天冬氨酸时,导致对 pNP-β-d-木吡喃糖苷 (pNPX) 的 k(cat)/K(m) 值降低了 14 倍,而对 pNP-β-d-葡萄糖苷 (pNPG) 的 k(cat)/K(m) 值增加了 1.1 倍。因此,氨基酸残基 E115 可能有助于区分β-木糖苷和β-葡萄糖苷。我们的结果表明,四种 GH3 酶中的每一种都进化到在木质素多糖水解中发挥特定作用,并提供了对 GH3 酶催化和底物特异性中活性位点残基作用的深入了解。