Suppr超能文献

利用发病率的间接指标估计小范围冠心病的患病率。

Estimating prevalence of coronary heart disease for small areas using collateral indicators of morbidity.

机构信息

Department of Geography and Centre for Statistics, Queen Mary University of London, Mile End Rd, London E1 4NS, UK.

出版信息

Int J Environ Res Public Health. 2010 Jan;7(1):164-77. doi: 10.3390/ijerph7010164. Epub 2010 Jan 18.

Abstract

Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity.

摘要

不同的慢性病发病率指标在细分的空间尺度上(例如,人口不足 10000 的小区域)可能不一定可用。相反,某些指标可能只在更高的空间尺度上可用;例如,小区域可能记录有死亡人数,但只有在更高的空间尺度上才能记录疾病的流行率。尽管如此,小区域层面的流行率估计对于评估健康需求很重要。例如在英格兰,冠心病的死亡和住院数据可用于称为病房的小区域,但患病率仅在相对较大的卫生当局区域可用。在这种情况下,为了在小区域层面估计 CHD 患病率,提出了一种共享随机效应方法,该方法汇集了不同指标(死亡、住院、流行率)的空间发病差异信息。共享随机效应方法还考虑了小区域之间已知风险因素(例如收入、族裔结构)的差异。泊松多项等效性可用于确保小区域患病率估计值总和等于已知的较大区域总数。通过使用伦敦的住院数据和病房级别的 CHD 死亡数据以及大得多的地方卫生当局区域的 CHD 患病率总和来说明这一点。共享随机效应涉及一个空间相关的共同因素,该因素解释了潜在风险因素的聚类,并且还提供了小区域 CHD 发病的综合衡量标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5e/2819782/bf824e8c6e93/ijerph-07-00164f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验