Suppr超能文献

拟南芥异三聚体 G 蛋白的α亚基 GPA1 是蒸腾效率的调节剂。

The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency.

机构信息

Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA.

出版信息

Plant Physiol. 2010 Apr;152(4):2067-77. doi: 10.1104/pp.109.148262. Epub 2010 Mar 3.

Abstract

Land plants must balance CO2 assimilation with transpiration in order to minimize drought stress and maximize their reproductive success. The ratio of assimilation to transpiration is called transpiration efficiency (TE). TE is under genetic control, although only one specific gene, ERECTA, has been shown to regulate TE. We have found that the alpha-subunit of the heterotrimeric G protein in Arabidopsis (Arabidopsis thaliana), GPA1, is a regulator of TE. gpa1 mutants, despite having guard cells that are hyposensitive to abscisic acid-induced inhibition of stomatal opening, have increased TE under ample water and drought stress conditions and when treated with exogenous abscisic acid. Leaf-level gas-exchange analysis shows that gpa1 mutants have wild-type assimilation versus internal CO2 concentration responses but exhibit reduced stomatal conductance compared with ecotype Columbia at ambient and below-ambient internal CO2 concentrations. The increased TE and reduced whole leaf stomatal conductance of gpa1 can be primarily attributed to stomatal density, which is reduced in gpa1 mutants. GPA1 regulates stomatal density via the control of epidermal cell size and stomata formation. GPA1 promoter::beta-glucuronidase lines indicate that the GPA1 promoter is active in the stomatal cell lineage, further supporting a function for GPA1 in stomatal development in true leaves.

摘要

陆生植物必须平衡二氧化碳同化与蒸腾作用,以最小化干旱胁迫并最大限度地提高其繁殖成功率。同化与蒸腾的比率称为蒸腾效率(TE)。TE 受遗传控制,但只有一个特定的基因——伸展蛋白(ERECTA)被证明可以调节 TE。我们发现,拟南芥(Arabidopsis thaliana)异三聚体 G 蛋白的α亚基(Arabidopsis thaliana),GPA1,是 TE 的调节因子。gpa1 突变体,尽管保卫细胞对脱落酸诱导的气孔开度抑制反应迟钝,但在充足的水分和干旱胁迫条件下以及用外源脱落酸处理时,TE 增加。叶片水平的气体交换分析表明,gpa1 突变体具有与野生型同化作用相对于内部 CO2 浓度的响应,但与哥伦比亚生态型相比,在环境和低于环境的内部 CO2 浓度下,气孔导度降低。gpa1 的 TE 增加和整个叶片气孔导度降低主要归因于气孔密度降低,gpa1 突变体中气孔密度降低。GPA1 通过控制表皮细胞大小和气孔形成来调节气孔密度。GPA1 启动子::β-葡萄糖醛酸酶系表明,GPA1 启动子在气孔细胞谱系中活跃,进一步支持 GPA1 在真叶气孔发育中的功能。

相似文献

引用本文的文献

本文引用的文献

10
Cotyledon organogenesis.子叶器官发生
J Exp Bot. 2008;59(11):2917-31. doi: 10.1093/jxb/ern167. Epub 2008 Jul 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验