Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany.
Microbiology (Reading). 2010 May;156(Pt 5):1275-1283. doi: 10.1099/mic.0.029595-0. Epub 2010 Mar 4.
Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filament's base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor-stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.
许多细菌通过鞭毛运动,鞭毛是在其基部旋转的半刚性螺旋丝,由质子或钠离子梯度提供能量。鞭毛马达的两个主要部件之间产生扭矩:旋转开关复合物和与细胞壁相关的定子,它们排列成动态的环形结构。运动能力为许多细菌提供了生存优势,因此,鞭毛马达应该在广泛的环境条件下最佳地工作。最近的研究表明,许多物种具有单个鞭毛系统,但具有两个或更多个不同的定子系统,它们对鞭毛旋转有不同的贡献。这篇综述描述了最近关于转子-定子相互作用、不同定子作用以及定子选择如何调节的研究发现。一个新出现的模型表明,细菌鞭毛马达是动态的,可以通过定子交换来响应不同的环境条件进行调整。