School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Comput Math Methods Med. 2012;2012:280538. doi: 10.1155/2012/280538. Epub 2012 Nov 25.
A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views (transverse, coronal, and sagittal) with an average value of 91.0%.
提出了一种基于内容的图像检索 (CBIR) 系统,用于检索脑肿瘤的 T1 加权对比增强 MRI (CE-MRI) 图像。在这个 CBIR 系统中,考虑了基于视觉词汇包模型中的空间信息和脑肿瘤图像的领域知识,用于表示脑肿瘤图像。通过距离度量学习算法学习相似性度量,以缩小视觉特征和图像中语义概念之间的差距。学习到的相似性度量用于度量两幅图像之间的相似性,然后在提交查询图像到 CBIR 系统时,从数据集中检索最相似的图像。在具有三种脑肿瘤(脑膜瘤、神经胶质瘤和垂体瘤)的脑 CE-MRI 数据集上评估了所提出方法的检索性能。实验结果表明,对于不同视图(横断、冠状和矢状),所提出方法的平均准确率值范围为 90.4%至 91.5%,平均值为 91.0%。