Ambrogi Federico, Biganzoli Elia, Boracchi Patrizia
Department of Clinical Sciences and Community Health, University of Milan, Via Venezian 1, 20133 Milan, Italy.
BMC Med Res Methodol. 2014 Aug 9;14:97. doi: 10.1186/1471-2288-14-97.
Hazard ratios are ubiquitously used in time to event applications to quantify adjusted covariate effects. Although hazard ratios are invaluable for hypothesis testing, other adjusted measures of association, both relative and absolute, should be provided to fully appreciate studies results. The corrected group prognosis method is generally used to estimate the absolute risk reduction and the number needed to be treated for categorical covariates.
The goal of this paper is to present transformation models for time-to-event outcomes to obtain, directly from estimated coefficients, the measures of association widely used in biostatistics together with their confidence interval. Pseudo-values are used for a practical estimation of transformation models.
Using the regression model estimated through pseudo-values with suitable link functions, relative risks, risk differences and the number needed to treat, are obtained together with their confidence intervals. One example based on literature data and one original application to the study of prognostic factors in primary retroperitoneal soft tissue sarcomas are presented. A simulation study is used to show some properties of the different estimation methods.
Clinically useful measures of treatment or exposure effect are widely available in epidemiology. When time to event outcomes are present, the analysis is performed generally resorting to predicted values from Cox regression model. It is now possible to resort to more general regression models, adopting suitable link functions and pseudo values for estimation, to obtain alternative measures of effect directly from regression coefficients together with their confidence interval. This may be especially useful when, in presence of time dependent covariate effects, it is not straightforward to specify the correct, if any, time dependent functional form. The method can easily be implemented with standard software.
风险比在生存时间相关的应用中被广泛用于量化调整协变量的效应。尽管风险比对于假设检验非常重要,但为了全面理解研究结果,还应提供其他相对和绝对的调整关联度量。校正组预后方法通常用于估计分类协变量的绝对风险降低和需治疗人数。
本文的目的是提出用于生存时间结局的转换模型,以便直接从估计系数中获得生物统计学中广泛使用的关联度量及其置信区间。伪值用于转换模型的实际估计。
使用通过带有合适连接函数的伪值估计的回归模型,可以获得相对风险、风险差异和需治疗人数及其置信区间。给出了一个基于文献数据的例子和一个在原发性腹膜后软组织肉瘤预后因素研究中的原始应用。通过模拟研究展示了不同估计方法的一些特性。
在流行病学中,临床上有用的治疗或暴露效应度量广泛可用。当存在生存时间结局时,分析通常借助Cox回归模型的预测值进行。现在可以采用更通用的回归模型,通过采用合适的连接函数和伪值进行估计,直接从回归系数中获得效应的替代度量及其置信区间。当存在时间依存协变量效应时,如果有的话,指定正确的时间依存函数形式并不容易,此时这可能特别有用。该方法可以很容易地用标准软件实现。