Suppr超能文献

控制爆炸超压暴露模型中脑损伤的形态学和生物化学特征

Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure.

作者信息

Svetlov Stanislav I, Prima Victor, Kirk Daniel R, Gutierrez Hector, Curley Kenneth C, Hayes Ronald L, Wang Kevin K W

机构信息

Center of Innovative Research, Banyan Biomarkers, Inc, Alachua, Florida 32615, USA.

出版信息

J Trauma. 2010 Oct;69(4):795-804. doi: 10.1097/TA.0b013e3181bbd885.

Abstract

OBJECTIVES

Existing experimental approaches for studies of blast impact in small animals are insufficient and lacking consistency. Here, we present a comprehensive model, with repeatable blast signatures of controlled duration, peak pressure, and transmitted impulse, accurately reproducing blast impact in laboratory animals.

MATERIALS

Rat survival, brain pathomorphology, and levels of putative biomarkers of brain injury glial fibrillary acid protein (GFAP), neuron-specific enolase, and ubiquitin C-terminal hydrolase (UCH)-L1 were examined in brain, cerebrospinal fluid (CSF), and blood after 10 msec of 358 kPa peak overpressure blast exposure.

RESULTS

The high-speed imaging demonstrated a strong head acceleration/jolting accompanied by typical intracranial hematomas and brain swelling. Microscopic injury was revealed by prominent silver staining in deep brain areas, including the nucleus subthalamicus zone, suggesting both diffused and focal neurodegeneration. GFAP and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), markers of astroglia and oligodendroglia, accumulated substantially in the hippocampus 24 hours after blast and persisted for 30 days postblast. However, GFAP content in the blood significantly increased 24 hours after injury, followed by a decline and subsequent accumulation in CSF in a time-dependent fashion. A similar profile is shown for UCH-L1 increase in blood, whereas increased CSF levels of UCH-L1 persisted throughout 14 days after blast and varied significantly in individual rats. Neuron-specific enolase levels in blood were significantly elevated within 24 hours and 48 hours postblast.

CONCLUSIONS

The proposed model of controlled nonpenetrating blast in rats demonstrates the critical pathologic and biochemical signatures of blast brain injury that may be triggered by cerebrovascular responses, including blood-brain barrier disruption, glia responses, and neuroglial alterations.

摘要

目的

现有的用于研究小动物爆炸冲击的实验方法存在不足且缺乏一致性。在此,我们提出一种综合模型,该模型具有可重复的爆炸特征,包括可控的持续时间、峰值压力和传递冲量,能在实验动物中准确再现爆炸冲击。

材料

在358 kPa峰值超压爆炸暴露10毫秒后,对大鼠的存活率、脑病理形态学以及脑损伤的假定生物标志物胶质纤维酸性蛋白(GFAP)、神经元特异性烯醇化酶和泛素C末端水解酶(UCH)-L1在脑、脑脊液(CSF)和血液中的水平进行了检测。

结果

高速成像显示头部有强烈的加速/颠簸,伴有典型的颅内血肿和脑肿胀。在包括丘脑底核区在内的深部脑区,显著的银染显示出微观损伤,提示存在弥漫性和局灶性神经退行性变。GFAP和2',3'-环核苷酸3'-磷酸二酯酶(CNPase),即星形胶质细胞和少突胶质细胞的标志物,在爆炸后24小时在海马体中大量积累,并在爆炸后持续30天。然而,血液中GFAP含量在损伤后24小时显著增加,随后下降,随后以时间依赖性方式在脑脊液中积累。UCH-L1在血液中的增加呈现类似的情况,而脑脊液中UCH-L1水平在爆炸后14天内持续升高,且在个体大鼠中差异显著。血液中神经元特异性烯醇化酶水平在爆炸后24小时和48小时显著升高。

结论

所提出的大鼠可控非穿透性爆炸模型展示了爆炸脑损伤的关键病理和生化特征,这些特征可能由脑血管反应触发,包括血脑屏障破坏、胶质细胞反应和神经胶质改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验