Suppr超能文献

一种基于似然法在估计ROC曲线及其面积时调整不可忽略的验证偏倚的模型。

A model for adjusting for nonignorable verification bias in estimation of the ROC curve and its area with likelihood-based approach.

作者信息

Liu Danping, Zhou Xiao-Hua

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA.

出版信息

Biometrics. 2010 Dec;66(4):1119-28. doi: 10.1111/j.1541-0420.2010.01397.x.

Abstract

In estimation of the ROC curve, when the true disease status is subject to nonignorable missingness, the observed likelihood involves the missing mechanism given by a selection model. In this article, we proposed a likelihood-based approach to estimate the ROC curve and the area under the ROC curve when the verification bias is nonignorable. We specified a parametric disease model in order to make the nonignorable selection model identifiable. With the estimated verification and disease probabilities, we constructed four types of empirical estimates of the ROC curve and its area based on imputation and reweighting methods. In practice, a reasonably large sample size is required to estimate the nonignorable selection model in our settings. Simulation studies showed that all four estimators of ROC area performed well, and imputation estimators were generally more efficient than the other estimators proposed. We applied the proposed method to a data set from research in Alzheimer's disease.

摘要

在估计ROC曲线时,当真实疾病状态存在不可忽略的缺失时,观察到的似然性涉及由选择模型给出的缺失机制。在本文中,我们提出了一种基于似然性的方法,用于在验证偏差不可忽略时估计ROC曲线及其下面积。我们指定了一个参数化疾病模型,以使不可忽略的选择模型可识别。利用估计的验证概率和疾病概率,我们基于插补和重加权方法构建了四种类型的ROC曲线及其面积的经验估计。在实际中,在我们的设定下需要相当大的样本量来估计不可忽略的选择模型。模拟研究表明,所有四种ROC面积估计量表现良好,并且插补估计量通常比其他提出的估计量更有效。我们将所提出的方法应用于来自阿尔茨海默病研究的一个数据集。

相似文献

2
Covariate adjustment in estimating the area under ROC curve with partially missing gold standard.
Biometrics. 2013 Mar;69(1):91-100. doi: 10.1111/biom.12001. Epub 2013 Feb 14.
3
Nearest-Neighbor Estimation for ROC Analysis under Verification Bias.
Int J Biostat. 2015 May;11(1):109-24. doi: 10.1515/ijb-2014-0014.
4
Estimation of Area Under the ROC Curve under nonignorable verification bias.
Stat Sin. 2018 Oct;28(4):2149-2166. doi: 10.5705/ss.202016.0315.
5
Semiparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias.
Biometrics. 2011 Sep;67(3):906-16. doi: 10.1111/j.1541-0420.2011.01562.x. Epub 2011 Mar 1.
6
Adjusting for nonignorable missingness when estimating generalized additive models.
Biom J. 2010 Apr;52(2):186-200. doi: 10.1002/bimj.200900202.
7
Inverse probability weighting estimation of the volume under the ROC surface in the presence of verification bias.
Biom J. 2016 Nov;58(6):1338-1356. doi: 10.1002/bimj.201500225. Epub 2016 Jun 24.
9
Smoothed empirical likelihood inference for ROC curve in the presence of missing biomarker values.
Biom J. 2020 Jul;62(4):1038-1059. doi: 10.1002/bimj.201900121. Epub 2020 Jan 20.
10
Estimation of the volume under the receiver-operating characteristic surface adjusting for non-ignorable verification bias.
Stat Methods Med Res. 2018 Mar;27(3):715-739. doi: 10.1177/0962280217742541. Epub 2018 Jan 17.

引用本文的文献

1
Doubly Robust Augmented Model Accuracy Transfer Inference with High Dimensional Features.
J Am Stat Assoc. 2025;120(549):524-534. doi: 10.1080/01621459.2024.2356291. Epub 2024 Jun 24.
2
A unified Bayesian framework for exact inference of area under the receiver operating characteristic curve.
Stat Methods Med Res. 2021 Oct;30(10):2269-2287. doi: 10.1177/09622802211037070. Epub 2021 Sep 1.
3
Evaluating Discrimination of a Lung Cancer Risk Prediction Model Using Partial Risk-Score in a Two-Phase Study.
Cancer Epidemiol Biomarkers Prev. 2020 Jun;29(6):1196-1203. doi: 10.1158/1055-9965.EPI-19-1574. Epub 2020 Apr 10.
5
Estimation of Area Under the ROC Curve under nonignorable verification bias.
Stat Sin. 2018 Oct;28(4):2149-2166. doi: 10.5705/ss.202016.0315.
6
Bayesian Estimation of Combined Accuracy for Tests with Verification Bias.
Diagnostics (Basel). 2011 Dec 15;1(1):53-76. doi: 10.3390/diagnostics1010053.
7
Estimation of diagnostic test accuracy without full verification: a review of latent class methods.
Stat Med. 2014 Oct 30;33(24):4141-69. doi: 10.1002/sim.6218. Epub 2014 Jun 9.
8
Covariate adjustment in estimating the area under ROC curve with partially missing gold standard.
Biometrics. 2013 Mar;69(1):91-100. doi: 10.1111/biom.12001. Epub 2013 Feb 14.
9
Semiparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias.
Biometrics. 2011 Sep;67(3):906-16. doi: 10.1111/j.1541-0420.2011.01562.x. Epub 2011 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验