Suppr超能文献

非可忽略验证性偏倚下受试者工作特征曲线下面积的估计

Estimation of Area Under the ROC Curve under nonignorable verification bias.

作者信息

Yu Wenbao, Kim Jae Kwang, Park Taesung

机构信息

Children's Hospital of Philadelphia.

Iowa State University.

出版信息

Stat Sin. 2018 Oct;28(4):2149-2166. doi: 10.5705/ss.202016.0315.

Abstract

The Area Under the Receiving Operating Characteristic Curve (AUC) is frequently used for assessing the overall accuracy of a diagnostic marker. However, estimation of AUC relies on knowledge of the true outcomes of subjects: diseased or non-diseased. Because disease verification based on a gold standard is often expensive and/or invasive, only a limited number of patients are sent to verification at doctors' discretion. Estimation of AUC is generally biased if only small verified samples are used and it is thus necessary to make corrections for such lack of information. However, correction based on the ignorable missingness assumption (or missing at random) is also biased if the missing mechanism indeed depends on the unknown disease outcome, which is called nonignorable missing. In this paper, we propose a propensity-score-adjustment method for estimating AUC based on the instrumental variable assumption when the missingness of disease status is nonignorable. The new method makes parametric assumptions on the verification probability, and the probability of being diseased for verified samples rather than for the whole sample. The proposed parametric assumption on the observed sample is easier to be verified than the parametric assumption on the full sample. We establish the asymptotic properties of the proposed estimators. A simulation study is performed to compare the proposed method with existing methods. The proposed method is also applied to an Alzheimer's disease data collected by National Alzheimer's Coordinating Center.

摘要

接收者操作特征曲线下面积(AUC)常用于评估诊断标志物的整体准确性。然而,AUC的估计依赖于受试者真实结局的信息:患病或未患病。由于基于金标准的疾病验证通常成本高昂且/或具有侵入性,医生仅会酌情将有限数量的患者送去进行验证。如果仅使用少量经过验证的样本,AUC的估计通常会有偏差,因此有必要对这种信息缺失进行校正。然而,如果缺失机制确实取决于未知的疾病结局(即所谓的不可忽略缺失),基于可忽略缺失假设(或随机缺失)的校正也会有偏差。在本文中,当疾病状态的缺失不可忽略时,我们基于工具变量假设提出了一种用于估计AUC的倾向得分调整方法。新方法对验证概率以及经过验证样本而非整个样本的患病概率做出参数假设。对观察到的样本提出的参数假设比在整个样本上提出的参数假设更容易验证。我们建立了所提出估计量的渐近性质。进行了一项模拟研究,将所提出的方法与现有方法进行比较。所提出的方法还应用于由国家阿尔茨海默病协调中心收集的阿尔茨海默病数据。

相似文献

10
Estimation of the ROC curve under verification bias.验证性偏倚下ROC曲线的估计
Biom J. 2009 Jun;51(3):475-90. doi: 10.1002/bimj.200800128.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验