Suppr超能文献

体内和体外核小体定位的 DNA 序列依赖性。

The DNA sequence-dependence of nucleosome positioning in vivo and in vitro.

机构信息

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.

出版信息

J Biomol Struct Dyn. 2010 Jun;27(6):713-24. doi: 10.1080/073911010010524942.

Abstract

The contribution of histone-DNA interactions to nucleosome positioning in vivo is currently a matter of debate. We argue here that certain nucleosome positions, often in promoter regions, in yeast may be, at least in part, specified by the DNA sequence. In contrast other positions may be poorly specified. Positioning thus has both statistical and DNA-determined components. We further argue that the relative affinity of the octamer for different DNA sequences can vary and therefore the interaction of histones with the DNA is a 'tunable' property.

摘要

组蛋白-DNA 相互作用对体内核小体定位的贡献目前存在争议。我们在此认为,酵母中某些核小体位置(通常在启动子区域)至少部分由 DNA 序列决定。相比之下,其他位置可能没有明确的指定。因此,定位具有统计和 DNA 决定的成分。我们进一步认为,八聚体与不同 DNA 序列的相对亲和力可能会发生变化,因此组蛋白与 DNA 的相互作用是一种“可调”的特性。

相似文献

1
The DNA sequence-dependence of nucleosome positioning in vivo and in vitro.
J Biomol Struct Dyn. 2010 Jun;27(6):713-24. doi: 10.1080/073911010010524942.
2
Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.
J Biomol Struct Dyn. 2010 Jun;27(6):821-41. doi: 10.1080/073911010010524947.
3
Painting a perspective on the landscape of nucleosome positioning.
J Biomol Struct Dyn. 2010 Jun;27(6):795-802. doi: 10.1080/073911010010524946.
4
Nucleosome positioning by sequence, state of the art and apparent finale.
J Biomol Struct Dyn. 2010 Jun;27(6):741-6. doi: 10.1080/073911010010524944.
5
On the role of transcription in positioning nucleosomes.
PLoS Comput Biol. 2021 Jan 8;17(1):e1008556. doi: 10.1371/journal.pcbi.1008556. eCollection 2021 Jan.
6
Weakly positioned nucleosomes enhance the transcriptional competency of chromatin.
PLoS One. 2010 Sep 24;5(9):e12984. doi: 10.1371/journal.pone.0012984.
8
Chromatin remodeling by nucleosome disassembly in vitro.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3090-3. doi: 10.1073/pnas.0511050103. Epub 2006 Feb 21.
9
Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches.
J Biomol Struct Dyn. 2010 Jun;27(6):747-64. doi: 10.1080/07391102.2010.10508583.
10
The implication of DNA bending energy for nucleosome positioning and sliding.
Sci Rep. 2018 Jun 11;8(1):8853. doi: 10.1038/s41598-018-27247-x.

引用本文的文献

1
Beyond the mono-nucleosome.
Biochem Soc Trans. 2025 Jan 31;53(1):BCJ20240452. doi: 10.1042/BST20230721.
3
Single-Molecule Techniques to Study Chromatin.
Front Cell Dev Biol. 2021 Jul 5;9:699771. doi: 10.3389/fcell.2021.699771. eCollection 2021.
4
periodicDNA: an R/Bioconductor package to investigate k-mer periodicity in DNA.
F1000Res. 2021 Feb 24;10:141. doi: 10.12688/f1000research.51143.1. eCollection 2021.
5
The human telomeric nucleosome displays distinct structural and dynamic properties.
Nucleic Acids Res. 2020 Jun 4;48(10):5383-5396. doi: 10.1093/nar/gkaa289.
6
Atomistic insight into sequence-directed DNA bending and minicircle formation propensity in the absence and presence of phased A-tracts.
J Comput Aided Mol Des. 2020 Mar;34(3):253-265. doi: 10.1007/s10822-020-00288-z. Epub 2020 Jan 16.
7
DNA sequence encodes the position of DNA supercoils.
Elife. 2018 Dec 7;7:e36557. doi: 10.7554/eLife.36557.
8
High-resolution biophysical analysis of the dynamics of nucleosome formation.
Sci Rep. 2016 Jun 6;6:27337. doi: 10.1038/srep27337.
9
Impact of methylation on the physical properties of DNA.
Biophys J. 2012 May 2;102(9):2140-8. doi: 10.1016/j.bpj.2012.03.056.
10
Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter.
Biochim Biophys Acta. 2012 May;1819(5):419-27. doi: 10.1016/j.bbagrm.2012.01.009. Epub 2012 Jan 28.

本文引用的文献

1
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes.
Nature. 2009 Dec 24;462(7276):1016-21. doi: 10.1038/nature08621.
2
Nucleosome positioning by genomic excluding-energy barriers.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22257-62. doi: 10.1073/pnas.0909511106. Epub 2009 Dec 14.
3
Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?
Nucleic Acids Res. 2010 Jan;38(3):709-19. doi: 10.1093/nar/gkp1043. Epub 2009 Nov 24.
4
The role of DNA shape in protein-DNA recognition.
Nature. 2009 Oct 29;461(7268):1248-53. doi: 10.1038/nature08473.
5
High-resolution nucleosome mapping reveals transcription-dependent promoter packaging.
Genome Res. 2010 Jan;20(1):90-100. doi: 10.1101/gr.098509.109. Epub 2009 Oct 21.
6
Nucleosome positioning--what do we really know?
Mol Biosyst. 2009 Dec;5(12):1582-92. doi: 10.1039/b907227f. Epub 2009 Sep 30.
7
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.
Nat Struct Mol Biol. 2009 Aug;16(8):847-52. doi: 10.1038/nsmb.1636. Epub 2009 Jul 20.
8
A translational signature for nucleosome positioning in vivo.
Nucleic Acids Res. 2009 Sep;37(16):5309-21. doi: 10.1093/nar/gkp574. Epub 2009 Jul 13.
9
From DNA sequence to transcriptional behaviour: a quantitative approach.
Nat Rev Genet. 2009 Jul;10(7):443-56. doi: 10.1038/nrg2591.
10
High-resolution mapping of sequence-directed nucleosome positioning on genomic DNA.
J Mol Biol. 2009 Jul 10;390(2):292-305. doi: 10.1016/j.jmb.2009.04.079. Epub 2009 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验