Suppr超能文献

The role of geometry and elastic strains in dynamic states of proteins.

作者信息

Gavish B

出版信息

Biophys Struct Mech. 1977 Dec 27;4(1):37-52. doi: 10.1007/BF00538839.

Abstract

A theory is developed, where a linear macromolecule with geometrically constrained ends, elastically strained, exchanging energy with the solvent molecules through random collisions may provide a mechanism for the following specific functions in proteins: a) Induction of transient, oriented strains in substrates during transition between conformations. b) External variation of the rigidity and geometry of the active site. More generally, a macromolecule in solution possessing appropriate geometrical and elastic properties constitutes a machine, whose possible operations have common features with biological function such as passive transport, enzymatic catalysis and active transport. The theory suggests a quantitative law by which new information about the dynamical state of the protein molecule can be elucidated from the Arrhenius plot. It predicts a relationship between the rate of catalysis and the local viscosity of the solution.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验