Suppr超能文献

共显性 AFLP 在关联群体中的计分方法。

Codominant scoring of AFLP in association panels.

机构信息

Biometris, Wageningen, The Netherlands.

出版信息

Theor Appl Genet. 2010 Jul;121(2):337-51. doi: 10.1007/s00122-010-1313-x. Epub 2010 Mar 17.

Abstract

A study on the codominant scoring of AFLP markers in association panels without prior knowledge on genotype probabilities is described. Bands are scored codominantly by fitting normal mixture models to band intensities, illustrating and optimizing existing methodology, which employs the EM-algorithm. We study features that improve the performance of the algorithm, and the unmixing in general, like parameter initialization, restrictions on parameters, data transformation, and outlier removal. Parameter restrictions include equal component variances, equal or nearly equal distances between component means, and mixing probabilities according to Hardy-Weinberg Equilibrium. Histogram visualization of band intensities with superimposed normal densities, and optional classification scores and other grouping information, assists further in the codominant scoring. We find empirical evidence favoring the square root transformation of the band intensity, as was found in segregating populations. Our approach provides posterior genotype probabilities for marker loci. These probabilities can form the basis for association mapping and are more useful than the standard scoring categories A, H, B, C, D. They can also be used to calculate predictors for additive and dominance effects. Diagnostics for data quality of AFLP markers are described: preference for three-component mixture model, good separation between component means, and lack of singletons for the component with highest mean. Software has been developed in R, containing the models for normal mixtures with facilitating features, and visualizations. The methods are applied to an association panel in tomato, comprising 1,175 polymorphic markers on 94 tomato hybrids, as part of a larger study within the Dutch Centre for BioSystems Genomics.

摘要

本文描述了一种在没有基因型概率先验知识的关联群体中对 AFLP 标记进行共显性评分的方法。通过对带型强度拟合正态混合模型,对带型进行共显性评分,说明了并优化了现有的使用 EM 算法的方法。我们研究了一些可以提高算法性能的特征,以及混合的一般特征,如参数初始化、参数限制、数据转换和异常值剔除。参数限制包括成分方差相等、成分均值之间的距离相等或几乎相等,以及根据 Hardy-Weinberg 平衡的混合概率。带型强度的直方图可视化,叠加正态密度,以及可选的分类评分和其他分组信息,进一步辅助共显性评分。我们发现,正如在分离群体中所发现的,带型强度的平方根转换有利于经验证据。我们的方法为标记位点提供了后验基因型概率。这些概率可以作为关联映射的基础,比标准的评分类别 A、H、B、C、D 更有用。它们还可以用于计算加性和显性效应的预测因子。描述了 AFLP 标记数据质量的诊断方法:偏好三成分混合模型、成分均值之间良好的分离以及具有最高均值的成分中缺乏单峰。在 R 中开发了软件,其中包含带有促进特征的正态混合模型,以及可视化功能。该方法应用于番茄的关联群体,该群体由 94 个番茄杂种中的 1175 个多态性标记组成,是荷兰生物系统基因组学中心更大研究的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/085e/2886132/a0a8a7a3044c/122_2010_1313_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验