Suppr超能文献

光谱域光学相干断层扫描和自适应光学:成像光感受器层形态以解释临床前表型。

Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes.

机构信息

Department of Ophthalmology, Medical College of Wisconsin, The Eye Institute, Milwaukee, WI, USA.

出版信息

Adv Exp Med Biol. 2010;664:309-16. doi: 10.1007/978-1-4419-1399-9_35.

Abstract

Recent years have seen the emergence of advances in imaging technology that enable in vivo evaluation of the living retina. Two of the more promising techniques, spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) fundus imaging provide complementary views of the retinal tissue. SD-OCT devices have high axial resolution, allowing assessment of retinal lamination, while the high lateral resolution of AO allows visualization of individual cells. The potential exists to use one modality to interpret results from the other. As a proof of concept, we examined the retina of a 32 year-old male, previously diagnosed with a red-green color vision defect. Previous AO imaging revealed numerous gaps throughout his cone mosaic, indicating that the structure of a subset of cones had been compromised. Whether the affected cells had completely degenerated or were simply morphologically deviant was not clear. Here an AO fundus camera was used to re-examine the retina (~6 years after initial exam) and SD-OCT to examine retinal lamination. The static nature of the cone mosaic disruption combined with the normal lamination on SD-OCT suggests that the affected cones are likely still present.

摘要

近年来,成像技术的进步使得能够对活体视网膜进行体内评估。其中两种更有前途的技术,光谱域光学相干断层扫描(SD-OCT)和自适应光学(AO)眼底成像,提供了视网膜组织的互补视图。SD-OCT 设备具有高轴向分辨率,允许评估视网膜分层,而 AO 的高横向分辨率允许对单个细胞进行可视化。有可能使用一种模态来解释另一种模态的结果。作为概念验证,我们检查了一位 32 岁男性的视网膜,他之前被诊断出患有红绿色盲。先前的 AO 成像显示他的视锥细胞镶嵌中有许多间隙,表明一部分视锥细胞的结构已经受损。受影响的细胞是否已经完全退化,还是仅仅在形态上异常,尚不清楚。在这里,使用 AO 眼底相机重新检查视网膜(初次检查后约 6 年),并使用 SD-OCT 检查视网膜分层。视锥细胞镶嵌破坏的静态性质与 SD-OCT 上正常的分层相结合,表明受影响的视锥细胞可能仍然存在。

相似文献

2
Three-Dimensional Adaptive Optics-Assisted Visualization of Photoreceptors in Healthy and Pathologically Aged Eyes.
Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):1144-1155. doi: 10.1167/iovs.18-25702.
3
Integrity of the cone photoreceptor mosaic in oligocone trichromacy.
Invest Ophthalmol Vis Sci. 2011 Jul 1;52(7):4757-64. doi: 10.1167/iovs.10-6659.
4
High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy.
Ophthalmology. 2011 May;118(5):873-81. doi: 10.1016/j.ophtha.2010.08.032. Epub 2010 Nov 12.
5
Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea.
Ophthalmology. 2008 Oct;115(10):1771-7. doi: 10.1016/j.ophtha.2008.03.026. Epub 2008 May 16.
7
Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography.
Am J Ophthalmol. 2009 Jul;148(1):97-104.e2. doi: 10.1016/j.ajo.2009.01.019. Epub 2009 Mar 27.
8
Cone abnormalities in fundus albipunctatus associated with RDH5 mutations assessed using adaptive optics scanning laser ophthalmoscopy.
Am J Ophthalmol. 2014 Mar;157(3):558-70.e1-4. doi: 10.1016/j.ajo.2013.10.021. Epub 2013 Nov 16.
9
The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic.
Invest Ophthalmol Vis Sci. 2012 Dec 5;53(13):8006-15. doi: 10.1167/iovs.12-11087.

引用本文的文献

1
Challenges Associated With Ellipsoid Zone Intensity Measurements Using Optical Coherence Tomography.
Transl Vis Sci Technol. 2021 Oct 4;10(12):27. doi: 10.1167/tvst.10.12.27.
2
Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO).
Prog Retin Eye Res. 2021 Jul;83:100920. doi: 10.1016/j.preteyeres.2020.100920. Epub 2020 Nov 6.
3
Cellular imaging of inherited retinal diseases using adaptive optics.
Eye (Lond). 2019 Nov;33(11):1683-1698. doi: 10.1038/s41433-019-0474-3. Epub 2019 Jun 4.
5
Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(8):3853-63. doi: 10.1167/iovs.16-19608.
8
The reliability of parafoveal cone density measurements.
Br J Ophthalmol. 2014 Aug;98(8):1126-31. doi: 10.1136/bjophthalmol-2013-304823. Epub 2014 May 22.
10
Outer retinal structure in best vitelliform macular dystrophy.
JAMA Ophthalmol. 2013 Sep;131(9):1207-15. doi: 10.1001/jamaophthalmol.2013.387.

本文引用的文献

1
Adaptive optics with a magnetic deformable mirror: applications in the human eye.
Opt Express. 2006 Oct 2;14(20):8900-17. doi: 10.1364/oe.14.008900.
2
Adaptive optics flood-illumination camera for high speed retinal imaging.
Opt Express. 2006 May 15;14(10):4552-69. doi: 10.1364/oe.14.004552.
4
A pyramid approach to subpixel registration based on intensity.
IEEE Trans Image Process. 1998;7(1):27-41. doi: 10.1109/83.650848.
5
Human cone photoreceptor dependence on RPE65 isomerase.
Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15123-8. doi: 10.1073/pnas.0706367104. Epub 2007 Sep 11.
6
High-resolution imaging with adaptive optics in patients with inherited retinal degeneration.
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3283-91. doi: 10.1167/iovs.06-1422.
7
Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy.
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3178-83. doi: 10.1167/iovs.06-1315.
8
Automated identification of cone photoreceptors in adaptive optics retinal images.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1358-63. doi: 10.1364/josaa.24.001358.
9
Retinal microscotomas revealed with adaptive-optics microflashes.
Invest Ophthalmol Vis Sci. 2006 Sep;47(9):4160-7. doi: 10.1167/iovs.05-1195.
10
In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function.
Invest Ophthalmol Vis Sci. 2006 May;47(5):2080-92. doi: 10.1167/iovs.05-0997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验