Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for the BioCentury, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea.
Biosens Bioelectron. 2010 Jun 15;25(10):2361-5. doi: 10.1016/j.bios.2010.02.022. Epub 2010 Feb 26.
The unique properties of graphene oxides (GO) such as water dispersibility, versatile surface modification, and photoluminescence make them suitable for biological applications. In this study, we explored the use of GO sheets as a novel DNA biosensor by applying the GO in an array format to recognize specific DNA-DNA hybridization interaction. When the probe DNA linked to the surface of GO by using carbodiimide chemistry is hybridized with a gold nanoparticle (Au NP) labeled complementary DNA strand, the fluorescence emission intensity of the GO array is drastically reduced. TEM data reveal that the Au NPs are dispersed on the GO surface, particularly at edges and folded structures upon hybridization with a density of approximately 80 Au NPs per microm(2). This leads to ca. 87% fluorescence quenching as a consequence of fluorescence energy transfer between Au NPs and the GO sheets. These results suggest that the GO nanomaterials, which are readily synthesized on a large scale from a cheap graphite source, could have a wide range of bioapplications in the fields of biosensors, molecular imaging and nanobiotechnology.
氧化石墨烯(GO)具有独特的性质,如水分散性、多功能的表面修饰和光致发光性,使其适用于生物应用。在这项研究中,我们探索了将 GO 薄片用作新型 DNA 生物传感器的用途,通过将 GO 应用于阵列格式来识别特定的 DNA-DNA 杂交相互作用。当通过碳二亚胺化学将探针 DNA 连接到 GO 表面时,如果与金纳米粒子(Au NP)标记的互补 DNA 链杂交,则 GO 阵列的荧光发射强度会急剧降低。TEM 数据显示,Au NPs 在杂交后分散在 GO 表面上,特别是在边缘和折叠结构上,密度约为每平方微米 80 个 Au NPs。这导致约 87%的荧光猝灭,这是由于 Au NPs 和 GO 片之间的荧光能量转移。这些结果表明,GO 纳米材料可以从廉价的石墨源大规模制备,并且在生物传感器、分子成像和纳米生物技术等领域具有广泛的生物应用。