Suppr超能文献

在双分子质子-电子转移反应中,前驱体和后继体复合物形成的重要性。

The importance of precursor and successor complex formation in a bimolecular proton-electron transfer reaction.

机构信息

Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA.

出版信息

Inorg Chem. 2010 Apr 19;49(8):3685-7. doi: 10.1021/ic100143s.

Abstract

The transfer of a proton and an electron from the hydroxylamine 1-hydroxyl-2,2,6,6-tetramethylpiperidine (TEMPOH) to Co(III)(Hbim)(H(2)bim)(2) (H(2)bim = 2,2'-biimidazoline) has an overall driving force of DeltaG degrees = -3.0 +/- 0.4 kcal mol(-1) and an activation barrier of DeltaG(degrees) = 21.9 +/- 0.2 kcal mol(-1). Kinetic studies implicate a hydrogen-bonded "precursor complex" at high [TEMPOH], prior to proton-electron (hydrogen-atom) transfer. In the reverse direction, Co(II)(H(2)bim)(3) + TEMPO, a similar "successor complex" was not observed, but upper and lower limits on its formation have been estimated. The energetics of formation of these encounter complexes are the dominant contributors to the overall energetics in this system: DeltaG degrees ' for the proton-electron transfer step is only -0.3 +/- 0.9 kcal mol(-1). Thus, formation of the precursor and successor complexes can be a significant component of the thermochemistry for intermolecular proton-electron transfer, particularly in the low-driving-force regime, and should be included in quantitative analyses.

摘要

从羟胺 1-羟基-2,2,6,6-四甲基哌啶(TEMPOH)向 Co(III)(Hbim)(H(2)bim)(2)(H(2)bim = 2,2'-联咪唑)转移质子和电子的总体驱动力为 DeltaG 度=-3.0 +/- 0.4 kcal mol(-1),活化能为 DeltaG(degrees) = 21.9 +/- 0.2 kcal mol(-1)。动力学研究表明,在高 [TEMPOH] 下存在氢键“前体配合物”,然后进行质子-电子(氢原子)转移。在相反的方向上,Co(II)(H(2)bim)(3) + TEMPO 没有观察到类似的“后继配合物”,但已经估计了其形成的上限和下限。这些遭遇配合物的形成能是该体系整体能量学的主要贡献者:质子-电子转移步骤的 DeltaG 度'仅为-0.3 +/- 0.9 kcal mol(-1)。因此,前体和后继配合物的形成可能是分子间质子-电子转移热力学的重要组成部分,特别是在低驱动力区域,应包括在定量分析中。

相似文献

2
Electron and hydrogen-atom self-exchange reactions of iron and cobalt coordination complexes.
J Am Chem Soc. 2003 Mar 5;125(9):2629-40. doi: 10.1021/ja0273905.
5
Separating Proton and Electron Transfer Effects in Three-Component Concerted Proton-Coupled Electron Transfer Reactions.
J Am Chem Soc. 2017 Aug 2;139(30):10312-10319. doi: 10.1021/jacs.7b03562. Epub 2017 Jul 21.
7
Large ground-state entropy changes for hydrogen atom transfer reactions of iron complexes.
J Am Chem Soc. 2007 Apr 25;129(16):5153-66. doi: 10.1021/ja0686918. Epub 2007 Apr 3.
10
A Continuum of Proton-Coupled Electron Transfer Reactivity.
Acc Chem Res. 2018 Oct 16;51(10):2391-2399. doi: 10.1021/acs.accounts.8b00319. Epub 2018 Sep 20.

引用本文的文献

1
Photoredox-Catalyzed Nucleophilic Aromatic Substitution of Halophenols with Azoles via Oligomeric Phenylene Oxide Radicals.
J Am Chem Soc. 2025 Mar 19;147(11):9931-9938. doi: 10.1021/jacs.5c01012. Epub 2025 Mar 6.
2
Secondary Sphere Lewis Acid Activated Heme Superoxo Adducts Mimic Crucial Non-Covalent Interactions in IDO/TDO Heme Dioxygenases.
Chemistry. 2024 Dec 5;30(68):e202402310. doi: 10.1002/chem.202402310. Epub 2024 Nov 12.
3
A cobalt adduct of an N-hydroxy-piperidinium cation.
J Coord Chem. 2022;75(11-14):1853-1864. doi: 10.1080/00958972.2022.2119557. Epub 2022 Sep 14.
4
Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides.
J Am Chem Soc. 2022 Oct 19;144(41):18948-18958. doi: 10.1021/jacs.2c07099. Epub 2022 Oct 5.
5
Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications.
Chem Rev. 2022 Jan 12;122(1):1-49. doi: 10.1021/acs.chemrev.1c00521. Epub 2021 Dec 20.
6
Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis.
Chem Rev. 2022 Jan 26;122(2):2017-2291. doi: 10.1021/acs.chemrev.1c00374. Epub 2021 Nov 23.
7
Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer.
J Am Chem Soc. 2020 Apr 1;142(13):5974-5979. doi: 10.1021/jacs.0c01332. Epub 2020 Mar 20.
8
Understanding Chemoselectivity in Proton-Coupled Electron Transfer: A Kinetic Study of Amide and Thiol Activation.
J Am Chem Soc. 2019 Oct 23;141(42):16574-16578. doi: 10.1021/jacs.9b08398. Epub 2019 Oct 8.
9
Rate-Driving Force Relationships in the Multisite Proton-Coupled Electron Transfer Activation of Ketones.
J Am Chem Soc. 2019 Feb 13;141(6):2721-2730. doi: 10.1021/jacs.8b13451. Epub 2019 Feb 1.
10
Reactivity of the copper(iii)-hydroxide unit with phenols.
Chem Sci. 2017 Feb 1;8(2):1075-1085. doi: 10.1039/c6sc03039d. Epub 2016 Sep 27.

本文引用的文献

2
Trends in ground-state entropies for transition metal based hydrogen atom transfer reactions.
J Am Chem Soc. 2009 Apr 1;131(12):4335-45. doi: 10.1021/ja8081846.
3
Proton-coupled electron transfer in solution, proteins, and electrochemistry.
J Phys Chem B. 2008 Nov 13;112(45):14108-23. doi: 10.1021/jp805876e. Epub 2008 Oct 9.
6
Proton-coupled electron transfer.
Chem Rev. 2007 Nov;107(11):5004-64. doi: 10.1021/cr0500030.
7
Excited-state quenching by proton-coupled electron transfer.
J Am Chem Soc. 2007 Jun 6;129(22):6968-9. doi: 10.1021/ja069049g. Epub 2007 May 12.
8
Solvent effects on the rates and mechanisms of reaction of phenols with free radicals.
Acc Chem Res. 2007 Mar;40(3):222-30. doi: 10.1021/ar0682029.
10
Proton-coupled electron transfer: a reaction chemist's view.
Annu Rev Phys Chem. 2004;55:363-90. doi: 10.1146/annurev.physchem.55.091602.094446.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验