Suppr超能文献

丝状真菌粗糙脉孢菌中一种隐花色素的遗传与分子特征分析

Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa.

作者信息

Froehlich Allan C, Chen Chen-Hui, Belden William J, Madeti Cornelia, Roenneberg Till, Merrow Martha, Loros Jennifer J, Dunlap Jay C

机构信息

Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.

出版信息

Eukaryot Cell. 2010 May;9(5):738-50. doi: 10.1128/EC.00380-09. Epub 2010 Mar 19.

Abstract

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay under circadian entrainment. Using electrophoretic mobility shift assays (EMSA), we show that CRY is capable of binding single- and double-stranded DNA (ssDNA and dsDNA, respectively) and ssRNA and dsRNA. Whole-genome microarray experiments failed to identify substantive transcriptional regulatory activity of cry under our laboratory conditions.

摘要

在植物和动物中,隐花色素作为光感受器或生物钟组件发挥作用。我们研究了丝状真菌粗糙脉孢菌中的隐花色素,并证明粗糙脉孢菌的cry编码一种DASH型隐花色素,它似乎能够结合黄素腺嘌呤二核苷酸(FAD)和次甲基四氢叶酸(MTHF)。cry转录本和CRY蛋白水平在蓝光下以wc-1依赖的方式强烈诱导,并且cry转录本受到昼夜节律调控,其丰度峰值与frq的相位相反。cry的缺失或过表达似乎都不会干扰自由运行的生物钟。然而,cry破坏敲除突变体在昼夜节律诱导下表现出小的相位延迟。使用电泳迁移率变动分析(EMSA),我们表明CRY能够结合单链和双链DNA(分别为ssDNA和dsDNA)以及ssRNA和dsRNA。全基因组微阵列实验未能在我们的实验室条件下鉴定出cry的实质性转录调控活性。

相似文献

1
Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa.
Eukaryot Cell. 2010 May;9(5):738-50. doi: 10.1128/EC.00380-09. Epub 2010 Mar 19.
2
White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter.
Science. 2002 Aug 2;297(5582):815-9. doi: 10.1126/science.1073681. Epub 2002 Jul 4.
3
A novel cryptochrome-dependent oscillator in Neurospora crassa.
Genetics. 2015 Jan;199(1):233-45. doi: 10.1534/genetics.114.169441. Epub 2014 Oct 30.
4
White collar-1, a DNA binding transcription factor and a light sensor.
Science. 2002 Aug 2;297(5582):840-3. doi: 10.1126/science.1072795. Epub 2002 Jul 4.
5
Circadian rhythms. A white collar protein senses blue light.
Science. 2002 Aug 2;297(5582):777-8. doi: 10.1126/science.1075485.
6
The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity.
PLoS One. 2014 Jun 25;9(6):e100625. doi: 10.1371/journal.pone.0100625. eCollection 2014.
7
The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase.
Curr Biol. 2020 Nov 16;30(22):4483-4490.e4. doi: 10.1016/j.cub.2020.08.051. Epub 2020 Sep 17.
9
Negative feedback defining a circadian clock: autoregulation of the clock gene frequency.
Science. 1994 Mar 18;263(5153):1578-84. doi: 10.1126/science.8128244.
10
Circadian clock-specific roles for the light response protein WHITE COLLAR-2.
Mol Cell Biol. 2001 Apr;21(8):2619-28. doi: 10.1128/MCB.21.8.2619-2628.2001.

引用本文的文献

2
The development and nutritional quality of affected by monochromatic or mixed light provided by light-emitting diode.
Front Nutr. 2024 May 27;11:1404138. doi: 10.3389/fnut.2024.1404138. eCollection 2024.
4
Lessons on fruiting body morphogenesis from genomes and transcriptomes of .
Stud Mycol. 2023 Jul;104:1-85. doi: 10.3114/sim.2022.104.01. Epub 2023 Jan 31.
5
An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms.
J Fungi (Basel). 2023 May 19;9(5):591. doi: 10.3390/jof9050591.
6
Photoreceptors.
J Fungi (Basel). 2023 Mar 4;9(3):319. doi: 10.3390/jof9030319.
7
Plant Cryptochromes Illuminated: A Spectroscopic Perspective on the Mechanism.
Front Chem. 2021 Nov 24;9:780199. doi: 10.3389/fchem.2021.780199. eCollection 2021.
8
Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context.
Front Plant Sci. 2020 Dec 15;11:597642. doi: 10.3389/fpls.2020.597642. eCollection 2020.

本文引用的文献

1
A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa.
Fungal Genet Biol. 2010 Apr;47(4):352-63. doi: 10.1016/j.fgb.2009.11.004. Epub 2009 Nov 20.
2
Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies.
Eukaryot Cell. 2009 May;8(5):800-4. doi: 10.1128/EC.00072-09. Epub 2009 Mar 13.
3
Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora.
EMBO J. 2009 Apr 22;28(8):1029-42. doi: 10.1038/emboj.2009.54. Epub 2009 Mar 5.
4
Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):21023-7. doi: 10.1073/pnas.0805830106. Epub 2008 Dec 12.
5
A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development.
Fungal Genet Biol. 2008 Sep;45(9):1265-76. doi: 10.1016/j.fgb.2008.06.004. Epub 2008 Jun 27.
6
Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
Nature. 2008 Aug 21;454(7207):1014-8. doi: 10.1038/nature07183. Epub 2008 Jul 20.
7
More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development.
Mol Biol Cell. 2008 Aug;19(8):3254-62. doi: 10.1091/mbc.e08-01-0061. Epub 2008 May 21.
8
How arginine-rich domains coordinate mRNA maturation events.
RNA Biol. 2007 Aug;4(2):69-75. doi: 10.4161/rna.4.2.4869. Epub 2007 Aug 12.
10
Fungal photoreceptors: sensory molecules for fungal development and behaviour.
Photochem Photobiol Sci. 2007 Jul;6(7):725-36. doi: 10.1039/b702155k. Epub 2007 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验