Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, Baton Rouge, LA 70803, USA.
Semin Cancer Biol. 2010 Aug;20(4):211-21. doi: 10.1016/j.semcancer.2010.03.001. Epub 2010 Mar 20.
It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families - long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements - mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development.
现在人们普遍认为,人类基因组并不是最初假定的稳定实体。缺失、重复、倒位和插入很常见,对基因组结构变异(SV)有重要贡献。它们的共同影响产生了人类之间观察到的大部分个体间基因组多样性。这些变异不仅改变了基因组的结构;它们还可能具有功能意义,例如改变基因表达。一些 SV 已被确定为遗传疾病的原因,包括癌症易感性。癌细胞以其基因组不稳定性而臭名昭著,并且经常在微观和亚微观水平上显示基因组重排,转座元件(TEs)对此有贡献。在这里,我们回顾了 TEs 在基因组不稳定性中的作用,特别关注非 LTR 反转录转座子。目前,三种非 LTR 反转录转座子家族——长散布元件 1(L1)、SVA(短散布元件(SINE-R)、可变数串联重复(VNTR)和 Alu)和 Alu(一个 SINE)元件——在人类基因组中移动,并通过插入和插入后诱变导致基因组不稳定性。由于 TEs 的丰富性和高序列同一性,它们经常使同源重组修复途径错误地进入非等位同源重组,导致缺失、重复和倒位。虽然研究较少,但非 LTR 反转录转座子插入和 TE 介导的重排在癌细胞中可能比在健康组织中更为常见。这至少部分归因于常见的全局低甲基化以及癌细胞的一般表观遗传功能障碍。在可能的情况下,我们提供了影响癌症易感性和/或发展的例子。