Suppr超能文献

使用中心注意力卷积神经网络减少不平衡数据上的肺结节假阳性

Lung nodule false positive reduction using a central attention convolutional neural network on imbalanced data.

作者信息

Hao Kexin, Cai Annan, Feng XingYu, Ma Ling, Zhu Jingwen, Wang Murong, Zhang Yun, Fei Baowei

机构信息

College of Software, Nankai University.

PVmed Medical Technologies LTD.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12466. doi: 10.1117/12.2654216. Epub 2023 Apr 3.

Abstract

Computer-aided detection systems for lung nodules play an important role in the early diagnosis and treatment process. False positive reduction is a significant component in pulmonary nodule detection. To address the visual similarities between nodules and false positives in CT images and the problem of two-class imbalanced learning, we propose a central attention convolutional neural network on imbalanced data (CACNNID) to distinguish nodules from a large number of false positive candidates. To solve the imbalanced data problem, we consider density distribution, data augmentation, noise reduction, and balanced sampling for making the network well-learned. During the network training, we design the model to pay high attention to the central information and minimize the influence of irrelevant edge information for extracting the discriminant features. The proposed model has been evaluated on the public dataset LUNA16 and achieved a mean sensitivity of 92.64%, specificity of 98.71%, accuracy of 98.69%, and AUC of 95.67%. The experimental results indicate that our model can achieve satisfactory performance in false positive reduction.

摘要

用于肺结节的计算机辅助检测系统在早期诊断和治疗过程中发挥着重要作用。减少假阳性是肺结节检测中的一个重要组成部分。为了解决CT图像中结节与假阳性之间的视觉相似性以及两类不平衡学习的问题,我们提出了一种基于不平衡数据的中心注意力卷积神经网络(CACNNID),以从大量假阳性候选物中区分出结节。为了解决数据不平衡问题,我们考虑密度分布、数据增强、降噪和平衡采样,以使网络得到良好的学习。在网络训练过程中,我们设计模型高度关注中心信息,并最小化无关边缘信息的影响,以提取判别特征。所提出的模型已在公共数据集LUNA16上进行了评估,平均灵敏度达到92.64%,特异性达到98.71%,准确率达到98.69%,AUC达到95.67%。实验结果表明,我们的模型在减少假阳性方面能够取得令人满意的性能。

相似文献

1
Lung nodule false positive reduction using a central attention convolutional neural network on imbalanced data.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12466. doi: 10.1117/12.2654216. Epub 2023 Apr 3.
2
Attention-embedded complementary-stream CNN for false positive reduction in pulmonary nodule detection.
Comput Biol Med. 2021 Jun;133:104357. doi: 10.1016/j.compbiomed.2021.104357. Epub 2021 Mar 30.
3
A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
PLoS One. 2019 Jul 12;14(7):e0219369. doi: 10.1371/journal.pone.0219369. eCollection 2019.
4
Reducing False-Positives in Lung Nodules Detection Using Balanced Datasets.
Front Public Health. 2021 May 19;9:671070. doi: 10.3389/fpubh.2021.671070. eCollection 2021.
5
3D multi-scale deep convolutional neural networks for pulmonary nodule detection.
PLoS One. 2021 Jan 7;16(1):e0244406. doi: 10.1371/journal.pone.0244406. eCollection 2021.
6
Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.
Comput Methods Programs Biomed. 2018 Oct;165:215-224. doi: 10.1016/j.cmpb.2018.08.012. Epub 2018 Aug 31.
8
Pulmonary nodule detection on chest radiographs using balanced convolutional neural network and classic candidate detection.
Artif Intell Med. 2020 Jul;107:101881. doi: 10.1016/j.artmed.2020.101881. Epub 2020 May 22.
10
Two-stage lung nodule detection framework using enhanced UNet and convolutional LSTM networks in CT images.
Comput Biol Med. 2022 Oct;149:106059. doi: 10.1016/j.compbiomed.2022.106059. Epub 2022 Sep 3.

本文引用的文献

1
Cancer statistics, 2023.
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
2
An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection.
Int J Comput Assist Radiol Surg. 2021 Dec;16(12):2269-2277. doi: 10.1007/s11548-021-02478-y. Epub 2021 Aug 27.
3
Attention-embedded complementary-stream CNN for false positive reduction in pulmonary nodule detection.
Comput Biol Med. 2021 Jun;133:104357. doi: 10.1016/j.compbiomed.2021.104357. Epub 2021 Mar 30.
5
A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans.
IEEE Trans Med Imaging. 2020 May;39(5):1419-1429. doi: 10.1109/TMI.2019.2947595. Epub 2019 Oct 29.
6
Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection.
IEEE Trans Med Imaging. 2020 Mar;39(3):797-805. doi: 10.1109/TMI.2019.2935553. Epub 2019 Aug 15.
9
Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.
Med Image Anal. 2017 Aug;40:172-183. doi: 10.1016/j.media.2017.06.014. Epub 2017 Jun 30.
10
Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.
IEEE Trans Biomed Eng. 2017 Jul;64(7):1558-1567. doi: 10.1109/TBME.2016.2613502. Epub 2016 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验