Hao Kexin, Cai Annan, Feng XingYu, Ma Ling, Zhu Jingwen, Wang Murong, Zhang Yun, Fei Baowei
College of Software, Nankai University.
PVmed Medical Technologies LTD.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12466. doi: 10.1117/12.2654216. Epub 2023 Apr 3.
Computer-aided detection systems for lung nodules play an important role in the early diagnosis and treatment process. False positive reduction is a significant component in pulmonary nodule detection. To address the visual similarities between nodules and false positives in CT images and the problem of two-class imbalanced learning, we propose a central attention convolutional neural network on imbalanced data (CACNNID) to distinguish nodules from a large number of false positive candidates. To solve the imbalanced data problem, we consider density distribution, data augmentation, noise reduction, and balanced sampling for making the network well-learned. During the network training, we design the model to pay high attention to the central information and minimize the influence of irrelevant edge information for extracting the discriminant features. The proposed model has been evaluated on the public dataset LUNA16 and achieved a mean sensitivity of 92.64%, specificity of 98.71%, accuracy of 98.69%, and AUC of 95.67%. The experimental results indicate that our model can achieve satisfactory performance in false positive reduction.
用于肺结节的计算机辅助检测系统在早期诊断和治疗过程中发挥着重要作用。减少假阳性是肺结节检测中的一个重要组成部分。为了解决CT图像中结节与假阳性之间的视觉相似性以及两类不平衡学习的问题,我们提出了一种基于不平衡数据的中心注意力卷积神经网络(CACNNID),以从大量假阳性候选物中区分出结节。为了解决数据不平衡问题,我们考虑密度分布、数据增强、降噪和平衡采样,以使网络得到良好的学习。在网络训练过程中,我们设计模型高度关注中心信息,并最小化无关边缘信息的影响,以提取判别特征。所提出的模型已在公共数据集LUNA16上进行了评估,平均灵敏度达到92.64%,特异性达到98.71%,准确率达到98.69%,AUC达到95.67%。实验结果表明,我们的模型在减少假阳性方面能够取得令人满意的性能。