Suppr超能文献

一种基于CT扫描的肺癌靶点检测与亚型分类自动诊断方法。

An Automated Diagnosis Method for Lung Cancer Target Detection and Subtype Classification-Based CT Scans.

作者信息

Wang Lingfei, Zhang Chenghao, Zhang Yu, Li Jin

机构信息

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

Bioengineering (Basel). 2024 Jul 30;11(8):767. doi: 10.3390/bioengineering11080767.

Abstract

When dealing with small targets in lung cancer detection, the YOLO V8 algorithm may encounter false positives and misses. To address this issue, this study proposes an enhanced YOLO V8 detection model. The model integrates a large separable kernel attention mechanism into the C2f module to expand the information retrieval range, strengthens the extraction of lung cancer features in the Backbone section, and achieves effective interaction between multi-scale features in the Neck section, thereby enhancing feature representation and robustness. Additionally, depth-wise convolution and Coordinate Attention mechanisms are embedded in the Fast Spatial Pyramid Pooling module to reduce feature loss and improve detection accuracy. This study introduces a Minimum Point Distance-based IOU loss to enhance correlation between predicted and ground truth bounding boxes, improving adaptability and accuracy in small target detection. Experimental validation demonstrates that the improved network outperforms other mainstream detection networks in terms of average precision values and surpasses other classification networks in terms of accuracy. These findings validate the outstanding performance of the enhanced model in the localization and recognition aspects of lung cancer auxiliary diagnosis.

摘要

在肺癌检测中处理小目标时,YOLO V8算法可能会遇到误报和漏检情况。为解决这一问题,本研究提出了一种增强型YOLO V8检测模型。该模型将大尺度可分离核注意力机制集成到C2f模块中以扩大信息检索范围,在主干部分加强肺癌特征提取,并在颈部部分实现多尺度特征间的有效交互,从而增强特征表示能力和鲁棒性。此外,深度卷积和坐标注意力机制被嵌入到快速空间金字塔池化模块中以减少特征损失并提高检测精度。本研究引入基于最小点距离的交并比损失来增强预测边界框与真实边界框之间的相关性,提高小目标检测的适应性和准确性。实验验证表明,改进后的网络在平均精度值方面优于其他主流检测网络,在准确率方面超过其他分类网络。这些结果验证了增强模型在肺癌辅助诊断的定位和识别方面的出色性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b3/11351493/548b1895e389/bioengineering-11-00767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验