Academic Unit of Radiology, Royal Hallamshire Hospital, University of Sheffield, UK.
J Magn Reson. 2010 Jun;204(2):228-38. doi: 10.1016/j.jmr.2010.02.023. Epub 2010 Mar 1.
Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs.
已经提出了肺腺泡几何模型,以分析描述(3)He 在肺部的扩散(如通过脉冲梯度自旋回波(PGSE)方法测量),作为一种可能的手段,通过测量(3)He ADC 来表征肺微观结构。在这项工作中,在具有已知几何形状的圆柱形模型中进行的简单扩散加权实验中,突出了这些分析模型的主要局限性。这些发现通过基于相同几何形状的基于有限差分表示的 Bloch-Torrey 方程的数值模拟得到证实。根据所经历的物理扩散状态以及圆柱模型和其他基于 ADC 的方法对高斯扩散行为的基本依赖,讨论了现有“圆柱模型”的有效性。这里呈现的结果表明,圆柱模型的物理假设对于大的扩散梯度强度(大于约 15 mT/m)是无效的,这些强度通常用于人体肺部的(3)He ADC 测量。